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The objective of this paper is to present a unified study of multivariate super
vertex splines with cmphasis on the construction procedure and an application to
least-squares approximation with interpolatory constraints. Both simplicial and
parallelepiped partitions arc studied in some detail, and in the bivariate setting,
cven a partition consisting of both triangles and parallelograms is considered.
When the polynomial degree is allowed to be sufficiently large as compared to the
order of smoothness, it is clear that vertex splines can be constructed by working
on each simplex or parallclepiped separately as long as certain suitable normal
derivative constraints are imposed on the boundary faces. Our constructive proce-
dure will take a different route. Instcad of normal derivatives, we impose extra
interpolatory conditions at the “vertices.” This gives risc to the notion of “super
splines” introduced in this paper. It should also be emphasized that the view point
of considering a basis of piccewise polynomials with smallest possible supports so
that the full approximation order is preserved makes vertex splines different from
the standard approach in finite elements. After all, if the polynomial degree is
required to be lower, it is necessary to work on at least three adjacent simplices or
parallelepipeds simultaneously in constructing a basis of vertex splines.  © 1990
Academic Press, Inc

1. INTRODUCTION

It is well known that (polynomial) spline functions in one variabie
provide an extremely useful tool in any theoretical or applied research and
computational endeavor that requires any form of approximation of only
partially or even implicitly known functions of one variable. Extensive
studies on both the theory and its applications are avaialable in the vast
spline literature (cf. [25, 4, 277). Recently, there has also been considerable
progress in the study of multivariate spline functions (or more precisely,
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piecewise polynomial functions satisfying certain smoothness conditions)
(cf. [9]). In particular, box splines provide a natural and computationally
efficient generalization of univariate B-splines on equally spaced knot. To
generalize univariate B-splines on an arbitrary knot sequence to the multi-
variate setting, so that important problems such as treatment of scattered
data can be handled, a natural approach is to give a basis of compactly
supported piecewise polynomial functions on a given simplicial partition.
This problem, however, is extremely complicated, and a general approach
does not seem to be feasible. For this reason, the notion of bivariate vertex
splines was introduced in [117] in order to give a generalization of the
univariate C' cubic and C? quintic Hermite basis to the two-dimensional
setting, one advantage being that vertex splines are easily computable. The
objectives of this paper are to present a unified study of vertex splines in
any number of dimensions, including both simplicial and parallelepiped
partitions (and in the two-dimensional setting, even mixed partitions), and
to discuss an application to least-squares approximation with interpolatory
constraints. For completeness, even some known results (usually in
different versions) will be included and verified in this paper, although
appropriate references will also be provided. Most of the results in this
paper have been announced in [12]. When the degree d of the polynomial
pieces in s-variables is much larger than the order r of smoothness, such as
d>=2°r+1 as already suggested by [29, 30, 2117, the construction of vertex
splines will be seen to be intimately related to the methods in finite
elements. Hence, the notion of super splines is introduced. These are C”
piecewise polynomial functions with higher order of smoothness across
lower-dimensional manifolds of the grid of partition. It will be seen that at
least for d>2°r+1, the subspace of super splines already gives the full
order of approximation, namely d+ 1. It should be noted and emphasized
that the notion of vertex splines is not confined to the restriction of
d=2°v + 1. Indeed, it is the point of view of considering a basis of smooth
piecewise polynomials with smallest possible supports that separates the
study of vertex splines from the standard procedure in working on each
simplex or parallelepiped individually. For instance, in [137, when
bivariate piecewise polynomials of total degree d on an arbitrary triangula-
tion are considered, the collection of all vertex splines in C” cannot be
obtained by using the standard procedure of the finite element method
when d=3r+2 and r > 2. For this reason, vertex splines will provide an
important vehicle to introduce spline techniques to the methods of finite
elements. However, our study of lower degree vertex splines must be
delayed to a later date (cf. [13] for s=2). It should also be noted that
vertex splines are constructed only when a grid partition is already given.
Many methods for generating simplicial partitions can be found in the
literature (cf. [28]).
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The outline of this paper is as follows. Bézier and Bernstein representa-
tions of polynomials on simplices and parallelepipeds will first be discussed.
An approach to the use of interpolation conditions at the vertices to deter-
mine a polynomial on a simplex or parallelepiped will be introduced in
Section 3. Section 4 will be devoted to the study of smoothness conditions
of piecewise polynomials. Here, known results in perhaps different
formulations are included for both completeness and convenience. The
main section is Section 5, where vertex splines are defined, construction
procedures are given for the case d > 2°r + 1, and that full approximation
order is achieved by super spline subspaces via vertex splines is verified. In
Section 6, least-squares approximation with interpolatory constraints will
be studied. Examples and graphs on various supports are shown in the last
section.

2. POLYNOMIAL REPRESENTATIONS

Let Z°. denote the set of all multi-integers with non-negative com-
ponents in the Euclidean space R, where s>=1. As usual, for
o= (o, ., 0)eZ’, we will use the notations |a|=o;+ - +ux,
al=o,! ot and x*=xP ... x% for any x=(x,, .., x,)€R’. In addition,
for another f=(,, .., B,)eZ’ , p<o will mean f§,<a;forall i=1, .., s

We will not follow the usual way,

P(x)= > a,x’,
aeZ¥,

finite numbers of a % 0
to express a polynomial P(x), but instead we will use the Bézier polynomial
representation on a somplex and the Bernstein polynomial representation
on a parallelepiped. Such representations are independent of the Cartesian
coordinates and hence provide more convenient expressions for our study
of piecewise polynomials. This section is divided into two parts so that we
can study each representation in some detail.

2.1. The Simplex Case

Let x% ..., x*eR’, s> 1. The convex hull

T, =<(x" ... xs>={z ixi: Y A,.=1,/1,.>0}
i=0 i=0

of the set {x° ..,x°} is called an s-simplex if its (directed) s-dimensional
volume
{ X0 ... xO

5

0
vol (x°, ... x*> =

1 xi A
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is nonzero. Here and throughout, we set x'=(x{,..,x%), i=0,.,s.
Suppose that {(x°, ..., x*) is an s-simplex. Then any x = (x,, .., x,) in R can
be identified by an (s + 1)-tuple (4, ..., 4,), where

vol . (x% ., x"7L x, x**1 . x*

hi=Aix)= vol,(x% .., x°)

This (s+ 1)-tuple is called the barycentric coordinate of x relative to the
s-simplex T),.

Note that each A,= 4,(x) is a linear polynomial in x. Hence, for f e Z*"'
with (f|=n, where neZ

n!
#50) =5 4
is a polynomial in 73(7), the space of all polynomials in s-variables of
total degree <» with respect to T. In fact, it is easy to see that {¢%(1):
| Bl =n} is a basis of =3(T,). The polynomial

Px)= Y apgii) @.1.1)
{Bl=n

is called a Bézier polynomial of total degree n relative to the s-simplex 7.

In addition, the set
{(Z %xi, a’i,): |/)’|=n}, (2.1.2)

=0

and for brevity {a}}, is called the Bézier net of the polynomial P,. Hence,
to describe the polynomial P,, we simply write down its Bézier net on the
simplicial array. For example, in Figure 2.1.1, we show the Bézier net of a
polynomial in 73(T,) on a triangular array.

Let us first consider the properties of differentiation and integration of
Bézier polynomials. If f is a differentiable function, and 4 and B are two

b4
Q400
a310 4301
Q220 a9y Q202
Q130 Q121 a1z a103
2040 4031 Q022 Q913 004
x! <2

Fig. 2.1.1. The Bézier net of P, in R?
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1191

46

distinct points in R’, the derivative of f along the directed line segment
from 4 to B at x is denoted by

d
(DB_Af)(x)=Ef(X +HB—A4)), -0

) ) 0 0 \
—(B—4)- <5xlf(X), w7 /)],

Hence, if y={y,, .., y,)=B— A, we have
o é
Dy= L vige
If y =x’—x’/, where x’#x/, however, we will also use the notation
D,=D, _ I#].
To discuss differences, we will use the notation
Eia, =0y o\ a

L @i 1y e %) 2

where the ({4 1)st component of the index a = (ag, ..., «,) is advanced by 1,
and we introduce the difference operator

. n__ n
dzay=Ea,— E,a.
We have

Lemma 2.1.1.  For i #],
(DyP)x)=n Y  Azais; '(A) (213}
|lz|=n- 1
Proof. To prove this lemma, we recall that if x'=(x{, .. x’) and
X = (X, .., X;), then

5
x,= Y, Ax!, I=1,..,s,
1=:0

so that

(DyP,)(x) = Z (xz—X’) P R(X)
=1

(2 ﬁ_P¢,
“\az, "o,
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Hence, (2.1.3) follows from a simple change of indices in

n! 0 0
n ao s
X to!eero! “(6/1 81)M A

op+ - Foy=n

For integration of a polynomial on an s-simplex, we have the following
result.

LEMMA 2.1.2. For any BeZ°"" with |B|=n,

[ e e ) dx = XLy

0, x> (”?S)

Proof. Equation (2.1.4) follows immediately from a change of variables
and an integral formula of the multi-I" function.

Consequently, we have

COROLLARY 2.1.1. Let

Px)= 3% bppi(Ag(x), .. A,(x)).

1Bl=n
/SEZA‘:l
Then
1<K, 0 X
| Px)dx = X XL 5y (2.1.5)
<x9, ., x> ( s ) 1Bl=n
BEZ5++1

Also, observing that
(D)
(!

we have the following formula for the inner product of two polynomials
over an s-simplex.

¢rﬂl()'09 ey ’13) ¢o¢m(’10ﬁ "ey /1.9) ¢;;l+n(,10’ oney s);

COROLLARY 2.1.2. Let

Pn(x) = Z bB¢;(/10(x)9 ey As(x))
1Bl=n
3EZS++1

and
Om(X)= 3 co#7(ho(X), .., A,(x)).

[Bl=m
BEZJ++1
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Then
vol Kx®, L x|

| P,(x) 0,,(x) dx = Y bye. (ﬁ”). (2.1.6)
<x0, e X5

5 (m+;1+s)(m:n) i ﬁ
!

ol =m

We refer to [5] and [16] for some other properties of Bézier polyno-
mials. To evaluate a polynomial in Bézier representation, we may apply the
de Casteljau algorithm (see, e.g., [7, 2, 15, 3, 14]). However, to graphically
display a Bézier polynomial surface P,, we may use the Bézier nets on sub-
divisions of T, instead of the exact values of P, on 7. Efficient algorithms
are available and will be discussed eisewhere (see, e.g., [2].)

2.2. The Parallelepiped Case

Let {x',..,x%} be a set of 2 distinct points in R so chosen that its
convex hull T, = (x!, .., x*) is a parallelepiped with s-dimensional volume
vol,{x', .., x*> #0, and call T, an s-parallelepiped. In this subsection, we
consider only non-negative scalar-valued s-dimensional volumes. Clearly,
the (s— 1)-dimensional boundary of the s-parallelepiped T, consist of 2s
(s — 1)-parallelepipeds, 4,, ..., 4,,, say. Suppose that they are so ordered
that A, | Ay (Le, Ay is parallel to A4,), k=1,.,s For
xe(x', .., x>, we let vol {(A4,,x) be the s-dimensional volume of the
convex hull of {x, 4.}, k=1, .., 2s. Then we have

vol (Ay_ 1, X) vol {4y, X __E
vol,(x!, .., x¥> " vol(x! ., x*> s
k=1, ..,s Set
1.{4
v v (x)ms el X

vol (x', .., x*

Then the barycentric coordinate of x relative to T,={(x', .., x") is
(vy, ..., v,). Thus, we may consider polynomials P (x)} of coordinate degree
o={a, .., a,)eZ’ in the form of

P(x)= Y a:fiv), (2.2.1)
where
F(v)= (:) V(1 —v)* 7 (2.2.2)
with

G)=C-G)

Y= (7)17 oo 7:)
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foa=(n,.,n), neZ  , we will simply write
Pn = P(n, ) 5;‘ = J(y"’ o n)’ &;1 = &‘;n, o n)'

Also, let #3(T,) denote the space of all such polynomials 13 and 7 (T,)=
i, . m(T2). For convenience, let us also assume that x'e (), 45 _, and
x'*tedy, i=1,..,5, such that v;(x'*')=0,, i, j=1, .., 5. Then the poly-
nomial P (x) in (2 2 1) is called a Bernstem polynomial of coordinate degree
a relative to the parallelepiped T, = {x!, .., x*'), and the set

{x+ 5 %(x"“—xl):&;‘}, (223)

y<a i
i=1,.,s

or for brevity {6%}, is called the Bézier ner of P, relative to this
parallelepiped T,. In Fig. 2.2.1, we represent a polynom1a1 in #3(T,) in
terms of its Bézier net on a parallelogram array.

We now introduce some properties on differentiation and integration
of the Bernstein polynomials P,. We have two lemmas which follow
immediately from the corresponding univariate results. The notation

D;=Disr_,i

will be used. In addition, we will set Aa,=d,,.—d, where

e=(0,.,0,1,0,..,0) is the standard unit vector in RS with 1 in the ith
component.

LEMMA 2.2.1. Let P, be given as in (2.2.1). Then

DP(x)=0; ¥ 4,8, “((x), ... vi(x)). (2.2.4)

y<a—él

Qo1 a1l az as agq;

Qog a1 Qoo A3g Qa0

FIG. 2.2.1. The Bézier net of P, in R?
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Lemma 2.2.2. For each y<a,

vol (x%, .., x¥
(0 +1) (o, + 1)

Lx] s cﬁi’;(vl(x), s V(X)) dx = (2.2.5)

Hence, for P,(x)=3,. &ng;‘(vl(x), s V{x)) on a parallelepiped
{(xY .., x%>, we have

COROLLARY 2.2.1.

vol (x!, .., x*)
(ay+1)---{o,+ 1)

Y a, (2.2.6)

r<a

Lxl, N P(x)d, =

Observing that

(+o) i b
5 Vl,- )55(‘)17-"7 S (rx+ﬂ)$y—#6( 1,..., s’
we also have

COROLLARY 2.2.2. For any two polynomials

Px)= 3 a,@:(v(x), ., v,(x))

A

and

Q,B(x) = Z cafﬁfé(vl(X), s V5(X))

s<p

on T,=(x',..,x%>, we have

[ PO ax
(xb L xE D

— vol (x!, ., x*> (7+5)
_(Oﬁl‘*‘ﬁ]-’rl) Ao, +B,+1) ga (oz+[3} a,Cs. (2.2.7)
B

5

/

To evaluate the value of P, (x) at some x € {x!, .., x*'), we may use de
Casteljau’s algorithm a number of times (cf [3]).
3. PoLYNOMIAL INTERPOLATION

In this section, we will develop a theory of multivariate interpolation by
Bézier and Bernstein polynomials. The results in this section will be used
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to facilitate our procedure in constructing multivariate vertex splines. The
interpolation will be taken at vertices of a simplex or a parallelepiped, and
we will express the interpolation polynomials in terms of the Bézier nets.
Since we will use polynomials of both total degree and coordinate degree,
we have to treat them separately and employ different notations. For
polynomials of total degree, we consider interpolation at vertices of
an s-simplex, and for polynomials of coordinate degree, we consider
interpolation at vertices on an s-parallelepiped.

Throughout this section, we will use the following definition: a subset
M eZ’ is called a lower set if ye M® whenever e M* and 0<y<f. The
following theorem gives an inversion formula which will be frequently used
in this and the next section.

THEOREM 3.1. Let M* be a lower set in Z°, and suppose that

fly= ¥ (j)(—l)mg(‘f), xe M.

Oysa N\

Then
sw= 3 (M) -0mse,  xesn

O<y<a
3.1. The Simplex Case

In this subsection, we will always assume that 7, = <{x° .., x*) is an
s-simplex. We need the following additional notation: for e Z°, , let
Df:= D} ... D

50

Dl:=Dfi-.. D8 DE: . DE i1, s,

i+1,

Dﬁ _ E; b1 64 Bs
0x, ox,)

Also, for € Z°"", let ¢, be a map from Z°** to Z°, defined by

and

Cr = C( 0y ees Ag) == (0gy ros By g5 Hyy 15 voes Xg)y

where i€ {0, .., s}.
We are ready to state and prove the following theorem.

TreoreM 3.1.1.  In Bézier representation with respect to {x°, .., x*), the
Taylor polynomial of a sufficiently smooth function f at the vertex x° is given
by

cou (n—|B1)! L
o= 3 x () b ) g, 2. 1)

lxl=nrn B<eoa ﬂ n
xcZ ! pezt,



MULTIVARIATE VERTEX SPLINES 255

Proof. Let
Pfix)= ) a;dy(do(x), .. 2(x))

)a)=n1
5+
xeZ

be the Taylor polynomial of function f at x° Then for each felZ’ with
Bl <n,
DEP,(f,x°) =D f(x°).

By Lemma 2.1.1, we see that

(=171 P(,x) =

{ s
(_1)!!3 A%"'Afo Ay —181,0....0)

n!
(n—1BN!
7!

! il ,
=my§ﬁ <3’> (- l)l ! Al 191,71, o 75)

Hence, applying the inversion formula in Theorem 3.1, we obtain

— )
A 11, 1o B = 2. (f)(*l)m(—n‘%/—l—)—'(—l)ml)%f’n(ﬁ x°%)

y<p

i?))
—Z() Dy f(x°),
y<f
completing the proof of the theorem.

In general, we also have the folowing formulation of the interpolation
polynomial at each vertex of the simplex.

TuroreM 3.1.2.  Suppose that all partial derivatives up io order k; of a
function f at X' exist. Let

~= 18!
Do (%) = ( ) !
* l“lzkt ﬁgfla ﬁ n!
aeZt pez’

X DP (%) 871 n iyei(Ro(X), ooy A5(X))
for i=0, ..., 5. Then the polynomial

Pl x)= T Pos(X) (3.12)

i=0
in n:(T,) satisfies the interpolation conditions
Dip(f,x)=D! f(x)), |BI<k, (3.1.3)
for i=0, ..., s and Be Z°,_, provided n > max {ki+k; i#]} + L
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Proof. 1Tt is obvious that we need only verify that p, ,. satisfies that
Dip, (x)=DEf(x)),  lal<k, (1)
and
D! poi(x)=0,  |a|<k,j#i ()

Clearly, (1) can be verified by the inversion formula in Theorem 3.1 along
the lines of the proof of Theorem 3.1.1. To prove (2), we note that for
n>k;+k;and || <k;

D;'g¢?ocg,,..,ai_1,oc,-+ n—Ri, g1y, as)(j‘()(xj% een3 A‘s(xj)) = 0

for we Z°*" with |a| <k;. That is, (2) holds and we have established the
theorem.

In the foliowing, let N,eZ, and M§={ﬁeZs+:B]<N,j,j—1 .S},
i=0,..,s Set n=(s+1) N+1 where N=max{N;:i=0,..,5j=1,.,5}
Then we have

THEOREM 3.1.3.  Suppose that f is a sufficiently smooth function. Then the
polynomial

o3 3 3 ()i

i=0 yeM; B<y

Dﬂf(x )¢(y, P =P, Vig L e 'ys)()'()(x)ﬁ ws A5(X))  (3.1.4)

satisfies the interpolation condition

DEp(fix)=DPf(x), BeM:, i=0,..,s. (3.1.5)
Proof. Let
Pn,(x Z Z <ﬂ>(n—lﬁ‘)
yeM] B<y .

X DI LX) G gin— 191,11, v (BoX)s s A5(X)).
Then we must prove that p,, ; satisfies
Dfp, (x"y=DIf(x),  BeM; (3)
and
DY p, (x/)=0, BeM;,j=1,..,s. 4)

Once (3) and (4) are established, the theorem then follows.
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Since fe M; and |y <sN<(s+1)N+1—8,, ye M}, we have

Dﬁ¢m S Vi = VLY 1y e ys)()“l(xj)’ e ’ls(xj)) =0

for all ye M; and j=1, .., s. Hence, p, ,(x) satisfies (4). To verify (3), we
may again apply the inversion formula as in the proof of Theorem 3.1.1.

Remark. [21] obtained a particular case of Theorem 3.1.2 and
Theorem 3.1.3 generalizes a result in {17} which was used to construct
blending interpolation. In general, our interpolation polynomials are not
uniquely determined by the interpolation conditions (3.1.3) and (3.1.5), but
in Theorems 3.1.2 and 3.1.3, we have explicit formulas of interpolation
polynomials in terms of Bézier representations. Of course, for s=1,
Theorem 3.1.2 and Theorem 3.1.3 give the same (unique) interpolation
polynomial determined by (3.1.3).

ExampLE 3.1.1. Let s=1. The polynomial p,(f, x} satisfying

Dip,(£,0)=Df(0), i=0, .,k
and
Dipn(.f; 1)=D7(1)) l=07 ""akZ:

where D'=d'/dx’ with n=k +k,+1, can be written in the Bernstein
representation

Pl x) = Z zl: ( ) )f(”(o)( )xi(l—x)”‘i

i=0 v=0

s Z() O vy (%) 1w,

j=0 u=0

In the foilowing theorems, we will specify certain interpolation condi-
tions on the vertices of an s-simplex to ensure unique polynomial inter-
polation. To do so, we need some additional notation.

Let IS := {feZ’ :|fl<sn}and AST!:= {aeZ°" :|a|=n}. A collec-
tion of subsets M3, ..., M of IS is said to form a partition of 43" if the
subsets satisfy:

(1) A7MinA;Mj=J for i#j, and
(2) Ul o ATMi=A5"1,

where A7 maps Z°_ to Z°*" and is defined by
A?B“:(ﬁlw"’ i’n—lﬁl’ﬁi+17"'7ﬂs)a ﬁEM;S

We have the following result.
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THEOREM 3.1.4.  Suppose that M3, ..., M’ are lower sets that form a parti-
tion of A5, Then for any given data {fiz: fe M3, i=0, .., s}, there exists
a unique polynomial p,, of total degree n satisfying

Dipx)y=f,5, BeM: i=0,.,s (3.1.6)

Moreover, p,(X) may be formulated as

o (n—]y n 2
px=3 Iy (NS oo, ). 617
i=0 BeMj “y<B v n
Proof. Let p,(X) =X, =n @z (Ao(X), .., 4,(x)) be a polynomial of total
degree n. By Lemma 2.1.1 and the inversion formula in Theorem 3.1 as in
the proof of Theorem 3.1.1, we obtain

wire 3 (ﬁ)(n (=0 e
r<p 4 n:

Since each M3 is a lower set, a4 is uniquely determined by the data

{fiveM;} for all Be M:. In other words, the coefficients a,, we A7 M,

i=0,..,s, are uniquely determined by {f; ' veM;,i=0,. ,s} Since

M3, .., M: form a partition of A5*', the given data set {f,:yeM;,

i=0, .., 5} in (3.16) uniquely determines the interpolation polynomial.

Actually, the requirement on the sets M%, i=0,..s can be slightly
relaxed. We have

TurOREM 3.1.5. Suppose that MSe I, i=0, .., s, form a partition of I";,.
Furthermore, suppose that

1° M3 is a lower set, and

2°  The union of M and some subset of ¢,(U{..q AT M3) is a lower set
for j=1, .., s. Then for any given data {fi;: fe M3,i=0, .., s}, there exists
a unique polynomial p, of total degree n that satisfies

Dfp,(x)=fy; PBeM:,i=0,.s

- This theorem may be proven similarly to Theorem 3.1.4 by noting that
the previous information can be used in determining the remaining Bézier
net of p,{x).

ExampLE 3.1.2. Let s=2 and n=>5. We choose lower sets M= {(0, 0),
(L0), (0.1), (2,0), (1,1), (0,2)}, M3=M3, and M%={(0,0), (1,0),
(2,0), (0, 1), (0,2), (1, 1), (1,2), (2, 1), (2,2)}. Then we can find a unique
polynomial p; satifying

D?pS(xi)z.fiﬁ’ ﬁEM?yi=0> 172>
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FiGure 3.1.1

for any given data set {fj;:feM;,i=0,1,2}. In Figure 3.1.1, we group
the Bézier net according to the corresponding M?, i=0, 1, 2.

ExaMpPLE 3.1.3. Let s=2 and n=6. We choose the sets M3={(0, 0},
(1,0), (0, 1), (2,0), (1,1}, (0,2), (2, 1), (3, 1)}, M7=1{(0,0), (1,0),
(0, 1), (2,0), (1,1), (0,2), (1,2}, (0, 3), (1 3 } and M2—1(0 0), (1,0),

(0,1),(2,0), (1, 1), (0,2), (1, 2), (0, 3), (1 ). (2. 2)}. By Theorem 3.1.5, we
may determine the interpolation polynomlal pe that satisfies the conditions

DEpexY=fyp, PeM? i=0,1.2,

for any given data {fj: peM?, i=0,1,2}. In Figure 3.1.2, we group the
Bézier net according to the corresponding M?,i=0, 1, 2.

- - Y o e e =

FIGURE 3.1.2

_———-v a3

640/60/3-2
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We next give an application of Theorem 3.1.1. Suppose that we have two
s-simplices S'=(x° x!,..,x*) and §=(x° y!, .., y*) sharing a common
vertex x° and a polynomial p,(X)=3, -, d.¢5(Ao(X), .., A(X)) with
respect to S. We want to find the Bézier representation of this polynomial
p.. with respect to 8. To do so, write y/ —x°=33_, ¢,(x'—x°),j=1, ., s,
where

vol (x% .., x'7 L y/ X't L xD
Ci =
. vol,(x°, .., x*)

Let €=(Cjg»w Cy)y J=1,us, and DE=(D,_ o). (D,_ )%, for
BeZ’, . Then since

Dy wNX)=Y exDus /)  j=1, s

we have

= Y C'Dyf(x°) (3.1.8)

for some constants C%. Also, since D§p,(x°)=n!/(n—|B|)! 4%

A% A, 1p1.0,...0)» We may apply Theorem 3.1.1 to obtain

THEOREM 3.1.6. Let S= (xo, v X and S = (Y0, .., ¥°) be two simplices
with a common vertex x° =y°. Suppose that p,= Diaj=n GqPy(Ao, oy A) is a
polynomial of total degree <n with respect to S. Then the Bézier representa-
tion of p, with respect to S is given by

oot
pu(X)= Y { ) (2) Z C«[/}A?é"'AZE»"(n—MI,o,...,O)}¢Z(Vo,--~aVs),
I71

lal=n L=< cou =81
where x=27_ v{x)y’ with 3_,vi{x)=1 and the Cf’s are defined as in
(3.1.8).

3.2. The Parallelepiped Case

We adopt the following convention and notation in addition to those
introduced in Section 2.2. Let §= (x', .., x*) be an s-parallelepiped. For
each x e S, the barycentric coordinate of x will be denoted by

V= (VI(X), ey VS(X)),
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[
=N
Pl

where we assume that v(x')=0,i=1,..,5 and v(x'*)=1,i=1, .., as
before.

For each i, 1 <i<2 let (X, x“) , {x', x%> be the s edges of S with
common vertex at x’ so that (x x">H<x x/*1y, i=1, .., s Hence, we

may designate for each vertex x’ an index #'=(n', .., %}, where
.1 if x'—xV=x'—x/*%
=Y 2 if x'—xi=—x'4+x/*L

For f=(f,, ... B,)eZ’ , we denote by D? the differentiation operator
Eﬁ = Z (Dxf“— xl)ﬁ/’
f=0

and for any o, feZ®, and a constant ¢, we use the notation

o * IBZ (alﬁlr vees OC5‘ﬂs)EZS+

and
cf=A{chy,...ch e’ .

Also, as before, let

75(S) ={ Y agdi(vy, e vy): aﬁER}

B<n

be the space of polynomials on § of coordinate degree n, where
n=(n,.,n)el’ . Write I')’={BeZ’ : f<n} and define a one-to-one
map R} from I} into itself by

(I—n')=n

RY:arsaxn'+ > ,

where 1=(1,.., 1)eZ*, , and let (R")~ be its inverse.
The following two theorems exhibit the collection of interpolation poly-
nomials satisfying certain interpolation conditions.

TueoreM 3.2.1. Suppose that [ has continuous partial dervatives up to
order k; at x', =1, ..., 2°. Then the polynomial

i)=Y I 3 () oy

i=1 |a|<k B<a

X DIF(X') B 71(X), s v,(%)
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satisfies
DPp(f,x)=Df(x")  |BI<k, for i=1,.,2°, (321)

where n=(n,, .., n,) with n,>max{k,+k;, j#1} +1,i=1, ., s
Proof. let

Pas¥)= T 2(2) P

lej <k f<a
X ﬁﬁf(xl) gR;'a(vl(x)o eesy VS(X)),

i=1,..,2° It is obvious that we only need verify that p, ,, satisfies

’pu, i(x)=Df(x"),  |BI<ky, (5)

and
DPp, 1 (x7)=0, [BI<k;,j=2,..,2° (6)

since the other polynomials p, ,, can be treated similarly. To do this, we
write

o= T ()55 oy e

f<a
=z</3)( LS Ly !
f=<

By using the inversion formula in Theorem 3.1, we find

lm(“ ﬁ) B PEF(xY) = B\ 1y
(—1) o 8= 3 (1) -1,

y<pg

=(-D' Y (f)(_1)|ﬁ~ytay

y<p
=(__1)Iﬂ| Afl"‘Afsao,
or

O=PE pogixty= ... 4t a,

Now if we set p, ,(X) =3, < 43, 8°(v,, ..., v;), then

MY AP dBa,F (), o vi(x)

DPp, o(x)=
Po.i(X) TR
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by the application of Lemma 2.2.1. Hence, we have

‘Dpn/q( = 4P a,

n!
TR
_n! (n ﬁ) 5
~ (n—p)!

That is, (5) is verified. To see that (6) also holds, we note that
n,zmax{k,+k}+1,i=1,.,s and

Dif(x"),  |BI<k,.

ﬁﬂpn,kl(xi) =

n!
BBy i s
(n—ﬂ)!dll A aryg, i=2,..,2°

where we may assume that p, =Y, <x du@ (vi(X), .., v,{x)). Since
n'#n'=(1, .., 1), we have agz =0 for | R} f+y| >min(n,— )= 1 +k; so
that

!
D)= ) (0"
=0.

Therefore, the theorem is established.

Let NyeZ, and Nj={(B;, . B)e€Z i ;<N j=1, ., 5}, i=1,.,2"
By using an argument similar to that in the proof of the Theorem 3.2.1 we
have the following result.

THEOREM 3.2.2. Suppose that f is sufficiently smooth at each vertex
x4 i=1,..,2° Then the polynomial

i)=Y 3 z(y) OIR 0 D) Baggs (), - .4)

i=1 BeN] y<§
satisfies
DPp (f. x'y=DFf(x"), BeN:, i=1,..,25% (3.2.2)

where n=(n, .., n,)€ Z°, with n;zmax{N,;+ N, j#k}, i=1,.,2"°

Of course, the polynomials in Theorems 3.2.1 and 3.2.2 may not unique.
We now study the situations when these interpolation problems have
unique solutions. We again need a definition of partition of 175 as follows:

A collection of subsets N3, .., N5, < IS is said to form a partition of I,
if
(i) RINiNR}N;=(J for i#jand
(i) U¥, RIN;=T
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TurOREM 3.2.3. Suppose that Ni<1%,i=1,..,2% are lower sets and
form a partition of I'S, Then for any given data {fz:BeN;, i=1,.,2°},
there exists a unique interpolation polynomial p, € #}(S) that satisfies

DPp(x)y=fiy, BeNi,i=1,.,2° (3.2.3)
Moreover, p, can be formulated as
25
=¥ 3 (2 ()00 ) fei 0 624
i=1 aeN] ‘y<o Y

Proof. From the assumption, the sets {a;: fe RIN}}, i=1,.., 2% are
mutually disjoint. Since

DPp(x") = - 4%a

ﬁ)‘

_ n! B\ sl
(n—ﬂ)!y;;(*/)( D e,

<B

for fe Ny = R}NY, the inversion formula in Theorem 3.1 gives

aﬁ=z (f)( 1)Ivl( l)m( ) n(Xl)

r<pB

-y ( )(n—ﬁ) o

y<p

This quantity is uniquely determined by the given data for fe N7, since N
is a lower set. Similarly, {a,:y€ R} Ni},i>2, is uniquely determined by
{f5»: 7€ N3i}. The existence and uniqueness of the interpolation polynomial
P, that satisfies (3.2.3) follow by choosing a, as above; ie.,

am= 2 ()OS0 s peNiimLia,

y<p \7

which are the coefficients in (3.2.4). Thus, the theorem is established.

From the proof of this theorem, we see that a;, fe R} N, are obtained
by using the previous information. Hence, the requirement that N7,
i=1,..,2% be lower sets in Theorem 3.2.3 can be slightly relaxed, and
the resulting theorem will become more applicable. That is, we have the
following generalization.
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THEOREM 3.2.4. Suppose that Ni< I}, i=1, .., 2°, form a partition of I'
and suppose further that

{i} N3 is a lower set, and

(i) the union of N3 and some subset of (R}) ' (U{Zg RINY) is also a
lower set for j=2, ..., 2s.

Then there exists a unique polynomial p, € #%5(S) that satisfies (3.2.3) for
any given data {f,;: fe N, i=1,..,2°}.

ExaMPLE 32.1. Let s=2 and n=(3.4). Suppose that N:={(0,0),
(0, 1), (6,2), (0,3), (1,0), (1, 1), (1,2), (1,3)}, N3={(0,0), (0, 1), (1,0),
(1 1)}, M3={(0,0), (1,0)}, and N3={(0,0), (1,0), (0, 1), {1, 1), (0,2),
(1,2)} (cf. Fig. 3.2.1 for the relationship between N7,i=1,2,3, 4, and the
Bézier net). Theorem 3.2.3 implies that for any given data {f;: fe N7} we
can find a unique polynomial that interpolates the given data.

ExamPLE 32.2. Let s=2 .and n=(5,5). Suppose that Nj={(0,0),
(1,0), (2,0), (3,0), (0, 1), (1, 1), (2,1), (3,1), (0,2), (1,2), (2,2)},
N3={(0,0),(1,0), (0, 1), (1, 1)}, N3={(0,0),(0,1), (0,2),(L,0), (L 1),
(1,2), (2,0), (3,0)}, and N3={(0,0), (1,0), (0, 1), (1,1}, (2, 1), (3, 1},
(0,2), (1,2), (2,2), (3,2), (0,3), (1,3), (2,3)} (cf. Figure 3.2.2 for the
relationship between {NZ:i=1,2,3,4} and the Bézier net). Theorem 3.2.3
implies that for any given data {f;;: fe N7, i=1,2,3, 4}, there is a unique
polynomial interpolating the given data, although N2 is not a lower set.

, ! N3 w?
B S
' f /ot
/ / ;
I
i
f ! ;
I3
___________ *y /
.
- e 4
N2 Wl/
P U |

FiGure 3.2.1
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4. SMOOTHNESS CONDITIONS

We next turn our attention to discussing the conditions for two polyno-
mials on adjacent geometric configurations to be joined smoothly together.
The geometric configurations under comsideration in this section are
s-simplices and s-parallelepipeds. Three cases will be studied: two simplices,
two parallelepipeds, and a triangle and a parallelogram. Other geometric
configurations such as prisms will be studied elsewhere. (See [20].)

4.1. The Simplex Case
Suppose that
S, =<(x% ., x>
and
S, ={x° ., x5y Ly
are two s-simplices in R® and T=(x° .., x*) is a k-simplex which is a

common facet of S, and S,, where 0 <k <s. Let F be defined on S;u S,
by

F(X)lSj =Pn(x)= Z = z aa¢;(10(x)9 revy A‘s(x))u
lal=n lel=n
where x=Y"3_, A(x) x* with 35_, A(x)=1 and
F(X)l5,= Pux)= 3 dufi(vo(x), . (X)),

lal=n

where x=55_ o v(x) X'+ Xi_, , v(x) ¥ with 32 _ov,(x) = 1.
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Write y/ =35 _¢;x,j=k+1, .. 5 We have

THEOREM 4.1.1.  Suppose that S, and S, are two s-simplices such that
T=S8,nS8, is a k-simplex in R*. Then FeC'(S, U S,) if and only if the
conditions

Ykt e Vs A
Ao AR Gy, .z, 0,.0)

5 Yko1 S Vs
Z(Z Ck+1,iAi0> (Z csl‘Ai0> Ay, .., %4, 0, .., 0) (4.1.1)
i~ 1 i

)
hold for 0<y,. + - +y,<rag+ - +a,+ 7.+ - +7,=8

Proof. I r=0, it is clear that Fe C°(S, U S,) if and only if (4.1.1) kolds
for %o+ --- 4+ 2, =n since two polynomials agree on T if and only if their
Bezier coefficients on 7 are equal. Suppose that Fe C(S;u S,), where
r=>1. Since y/ —x° =Y5_ ¢;;(x"—x°), it follows that
~ s Bi
(Dys- ) Plyp= ( Y ckiDK)) P

i=1

l
s ﬁ]>0'

e

Observing that

(D O)ﬁjﬁ iT::

y/-x

n!
Bis sn—p
gy L Andadih
777 tal

=B VA

and

5 B ‘ n! . R
(,Z Cj,-D,O) P :m|a|z (Z CjiAi0> a,py "

i =0 T =no-f \i=0 [

we have the equivalent conditions

K By
Bi A _
AJD a(ao, s %, 0, ., 0) T ( Z cjt'Al'0> a(zo. T R 03
i=0

for ag+ -+ +a,=n—p;, j=k+1, ., s Similarly, the conditions in {4.1.1)

that follow from equating the mixed derivatives are also obtained easily.
On the other hand, suppose that (4.1.1) holds for 0< B, + - +

B.<ry a0+ - +oy+Br+ - + By=n, where r = 0. It follows that

(Dy"‘l- xo)ﬁk-rl "'(Dy: -xo)ﬂ’r }SnET

s Biat 5 Bs '
:(Z Ck+1,iDio> (Z CsinO) P"!
i=0 i=0

e
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for all B+ --- + B,<r. Consequently, we have

k
( 0 ](! k 14X0)k 1.‘-( J—‘XO): n
J y Yy

j=0 T
k s B s Bs
= H (Dj0)6j<z Ck+1,iDi0) (Z CsiDm) P,
j=0 i=0 i=0 T
for B+ -+ +B.<r—Br.1— --- —B,. This implies that Fe C"(S; U S,),

and the proof of the theorem is completed.

It should also be noted that the smoothness conditions can be for-
mulated by using the information of F at one vertex. More precisely, we
have the following resuit.

TueoreM 4.1.2. FeC'(S,uU S,) if and only if

Voo DU(D st _0)Pett o (Dys_ 0)Pe B(x°)

s Br+1 s Bs
=D%~--kaz(2 cD) (2 D) P (412)
i=0 i=0

forall y,+ -+, <n—(Bryy+ - +B,) and B+ - +B,<r
Proof. If FeC'(S,uU S,), then

(l)yk“—xo)ﬁ’HLl Tt (Dy~“~x°)gs pn‘T

s B+ 1 s Bs
=<Z ck+1,iDzO> (Z csiDiO) P,
i=0 i

i=0

T

for Bie.i+ - +B,=51=0,.,r, and hence (4.12) holds for ali
Tt s —(Brt+ -+ B)and B+ - F B <
On the other hand, it is clear that (4.1.2) is equivalent to the condition

YL, AV ABKk+1 . ABs 4
Al A0 A% A g0, . 0)

s B +1 s Bs
=A% 4% ( Z ck+1,iAi0) ( Z csiAiO) A(x,0, ..., 0)
i=0 i=0
fory,+ - +yesn—PBro— - —Bo Bt - + B, <y, where ap=n—
(14 - +9e+Perr+ - +B,) Since d4,i=1,..,s are differences, it

follows from the inversion formula in Theorem 3.1 that

Br+1 . Bs 4
A0 A8 Aoy, a0, 0

s Bi+1 s Bs
= ( 2 Cr+ 1,iAi0> e ( Z CsiAi0> (o, ..., o, 0, ..., 0)
i=1 i=0
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for o1+ BsSrag+ - +ag=n—(Pr,+ - +B,). By Theorem 4.1.1,
we have Fe C'(S; v S,), which completes the proof of the theorem.

In fact, the idea in the above proof can yield a little more. We need the
following notation. Let M,,  ={aeZ*':|a|l=n0,,+ - +a,<r}
and write

y—x/=Y cj(x'=x/), i=k+1,.,s and j=0,..k

/=0

1]
Let
. k K
pr=T[ D} 1 Dy )"
i=0 i=k+1
i#j
and
k s s i
—ﬂ — 1 1
1= 1000 11 (T erny),
i=0 i=k+1 N=0
i#j
where j=0, ..., k.

Then we have the following generalization of Theorem 4.1.2.

THEOREM 4.1.3.  Suppose that M:*',i=0, .., k, are mutually disjoint
subsets of M, ,. and )i  M;*'=M,, .. Furthermore, suppose thai
chj*’ is a lower set for j=0, .. k. Then Fe C'(S, U S,)} if and only if

D4 P, (x7)= DI P, (x7) (4.1.3)

for e, M1, j=0, ., k.

The proof is similar to that of Theorem 4.1.2. Recall that the operator ¢,
was defined in the beginning of the last section.

Remark 1. One consequence of the above theorem is that it is not
necessary to use normal derivatives to ensure Fe C'(S; U S,).

Remark 2. Different versions of the smoothness conditions on polyno-
mials over adjacent simplices have been studied and be found in [15, 11,
5, 16, 19]. Here, generalized versions of our earlier work in [11] were
presented. In the following, we will establish the relationship between our
results and those of the others.
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THEOREM 4.1.4. Fe C'(S,u S,) if and only if

Aog, oo i Brs 1o s Bs)

s Bry1 s Bs
=(Z Ci+y, ,.s,-) <Z cs,-s,-) D, oy 28, 0, .. 0)
i=0 i=0

= X D2, o 0 0,y 0) b e 1+ - 75
|yl =Bj
'yjeZ‘Y+1
J=k+1,..s
X ¢€f:5(ck+ 1,0, Cr+ l,s) Tt ¢£’;(cs,o, ey Cog) (4.14)

Jor Bt - B Srogt ot i+ o+ B=n
Proof. Since for n,,,+ - +n,<r,

(_1)|nk+1 oo +nS}A%c+1 ~--A_’15 d(n—

HEal— ton —Hgm XL — cee Oy Y ey Ohg)

Niev1 n e+ 851 a
z (ﬁk 1)([3 ) (—1)[ﬁk+l+ " ‘a(‘xo.“l----,O‘k,ﬁk+l,-u,ﬁs)’
Bisn + s

Jj=k+1,..,s

the inversion formula in Theorem 3.1 can be applied to yield

~ ﬂk+l ﬁs s
Glagy i fors o B = D < >< )AZ"I%,o"'A?o

ni<Bi He+1 Hs
i=k+1,.,s
XAy gy — - —fpg— i — - —ag, 01, -+, @k, 0, .y 0)°

By Theorem 4.1.1, we have

A0, oo ey Bics 14 s Bs)

ﬁ ﬁs S N+ 1 S s
Z ( S PP ) Z ck+1,iA1'0) (Z csiAiO)
i< Bi He+1 s i=1 i=1

I

i=k+1,.,5s
X a(n—nk.H Str My T O e = Ok, O, e, Oks Oy .y 0)
s Nk 41 5 Hs
— ﬁk+1 ﬂs
= Z < )( )(Z ck+1.iA10) (Z CsiAtU)
n<Bi Hiyn s i=1 i=1
i=k+41,..,5
X(Eo)ﬁmw--<+Bs—-nk+1----- s

Xy gy oo =By a1 — - g, %y, o 25, Oy oy 0)
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s Bi+1 s Bs
Z(Eo‘f“ Z ck+1,iAi0) "‘<E0+ Z CsiAiO)

i=1 i=1

X Oy oy~ = Bymi— - = otg, a1, o 55, Oy ., O)
s B+ s Bs
:<2 ck+1,iEi> (Z CsiEt)
i=0 i=0
XA By = oo = Bam oy — o+ = s &1 v ¥, O 0

Therefore, the theorem is established.

We note, in particular, that when k=s5—1, we have

5 !
Qiag, oy as-1, N = ( x Csisi> Aoy, .. 21, 0)
H

i—0

= Z a(ao, w2ty —1, 0)+y¢~i;(csOa ooy Css)
lyl=1{

which can be seen to be the same as the versions in [15] and [19].

ExaMPLE 4.1.1. Let s=2 and S= (V% V., V), §=(V° U", U?> be
two 2-simplices with a common vertex V°. Let the polynomials P; on S
and P, on S be expressed by using their Bézier nets as shown in Fig. 4.1.1.
Write U'=a,VO+ B,V +y, V3, 0,4+ B, +y;=1, i=1,2. Define F by F|s=
P, and F|g=P,. Then

(1) FeC(Sul) if and only if a=k;

Figure 4.1.1
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(2) FeCY(SuS)if and only if a=k,
lLi=aya+ B.b,+7.bs,
and lLy=asa+ f,b,+ 7,05
(3) FeC*SuS) if and only if, in addition to the above relations,

my=oy L+ i by+ Biei+yica)+7i(o by + Bres +71¢3),

my =yl + Bt by + Brei+71¢5) + vl by + Bicr +y1¢3),
and

my =0yl + (001 + facy +72¢,) +72(0205 + Bacy +7505).
The geometric interpretation of the smoothness conditions is interesting.
See Fig. 4.1.2.

ExaMPLE 4.12. Let s=2 and n=3. Suppose that S=(V° V! 12>
and S=(V° V', U?) are two 2-simplices and P, and P, are two polyno-
mials of total degree <3 whose Bézier nets are displayed on their domains
S and S, respectively (cf. Fig. 4.1.3). Write U2=al°+ V' +yV?, where
a+pf+y=1 Then

(1) FeC(SuS) if and only if
a;=1, i=1,2,3,4;
(2) FeCYSuS)if and only if (1) is satisfied and
mizaéi+1+ﬂa[+ybi, i=1,2,3;
(3) FeC*SuS)if and only if (2) is satisfied and
ny=om,  ;+ fm;+y(ab, .+ Bb,+ yc,), i=1,2;

FIGURE 4.1.2
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FIGURE 4.1.3

and
(4) FeC*SuS)if and only if (3) is satisfied and
oy =on,+ fn; +y(a(abs + Bby + yc,)
+ Blab, + Bby + ye, )+ yloc, + fey + yd)).

The geometric interpretation of the C* smoothness conditions is shown
in Figs. 4.14a, 4.14b, 4.14c.

ExaMpLE 4.1.3. Let s=2 and n=3. Write U’V =V ~V°)+
YV — V%) and U?— V' =a(V°— V') +9(V*— V''). Then Fe CH(SuS) if
and only if

Docl/lz_ yoDo;/zl‘ V0p3(VO) = (ﬁDV1~ o+ VDVL Vﬂ)mDo{C/Zl, VOPB(VO)
and
DY DV By(VO)=(BDyo_yi+7Dy2_ )P DYy, P5(V°)

for (“1»“2)5 {(O’ O)’ (150)9 (Oa 1)9 (19 1)} and (Bls ﬁ2)6{(0’ 0): (1: O)a
(0, 1)}, which are both lower sets. Of course, there are many other choices
of such sets of (a, a,) and (B, f,).

4.2. The Parallelepiped Case

Suppose that
S=<(wl ., wP)
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and

S=<(w, .., w

, uzk+ 1’ » u25>

are two s-parallelepipeds in R® with a common facet 7= <{wl, .., w2y
which 1s a k-paralielepiped, where 0 <k <s. Let (v(X); oy Vo(X), ..., V(X))
and {u,(x), .., u,(x)) be the barycentric coordinates of x with respect to S
and S, respectively. Without loss of generality, by some rearrangement if
necessary, we assume that

V(W) =0=yu,(w'), i=1,..,5
v (W) =1=p,w"*Y, i=1,.,k

and

vk+j(w2k+j)=1=,uk+j(u2k+j)s ]:L s s—k.

{(See Fig. 4.2.1 for reference).
For any polynomial p, =3, <. a®@°, we define a degree raising operator
R/‘, 1 <j\<\ S, by

%; o ;
) J G ._. 40tel
Rjaj—;z—ag_e,-+<1 ——) al:=a;

J n;
and
{, 0 & o+ le/ (’i')(flil)
Rlal=7Y a —Lom i

+(i—ag)el y}
= a4 (i—a)e (n;:) s

where ¢ = (1, .., n,) and a = (ay, .., a,) € Z’, . Clearly,

P(X)= Y Ralpi+e.

e<o+el

u

FIGURE 4.2.1

640/60/3-3
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Suppose that F is a piecewise polynomial function defined on SuS by
Flg=p, and F|s=p,, where

pn(x) = Z aaaZ(vl(x)o cees VS(X)),

= Z dagg(vl(x)ﬁ ey ”s(x))a
B<n
and n=(n,..,n)eZ’ . Let
D= D Dyivi_ g, j=1 ..k,

.D D 2 +j ok _wly
and

s

j=Du2k+j—-k__wl, j=k+1,.,s
Choose ¢/ =(cj;, ..., ¢;), j=k+1, ..., 5, such that

s
. ki
ji(wz+1_w1)+ z cﬁ(wz +j k_wl).
i=1 i=k+1

We are now ready to state and establish the following theorems.

k
kool
kW= ¢

TueOREM 4.2.1. Let r=0,1,... Then Fe C'(SuS) if and only if
m—p)

i (n—'“)'

SR
lel==|8

W ARD - RFASD (42.1)

for B=fy 1"+ - +B.ef with |Bl<r and y<ne'+ .- + ne*, where
ay=a,, o(a)=(n—ay, .. n =0y, 1, .., n), and

s iyt
By
b= Y [ ==5—  l«l=1pl.
gl L bp=a jemk+1 n
Infi=Bjj=k+1,.,s5

Proof. First, note that

and
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where D* = (Dy, .., D,;)*=D{'--- D¥. Hence, for any p, e #3(S),

n! e .
(n ﬁ) Z ﬂ Agk-:% o .Agya‘/gﬂ/ ﬁ(tul(x)o aee3 ."’Ls(x))7
yEn—

where S =8, e+ ... + B.e*. Consequently,

Dt DE p(x) =

n!
Dt DEpo(x)l = (n — > Abest AP
——ﬁ) 7= (715 7k 0, ., @)

pisni=1, ..,k

x &, nel + - +”ek(,u1(X), s (%), 0, ..., ).

On the other hand, for o= (o, .., a,)e Z’ ,

Do)l p=——s ¥ AT A0, (X)), o v,(X))

y<n a

!
=__L_ Z AT AR . R

(n—a)!ysn~a+5c

X af @G vy (X), vy (%))

n!

T (n—o)! 2 v 4

Cysneld oo 4 nek

X R¥ ... Ruge@Fne' + - +1e(y (x), ., v,(x), 0, .., 0),

where we have used the degree raising operator.
Therefore, Fe C'(Su S) if and only if

ljlljk++i1 o Dfsﬁn(x)l T= Z b“Dap“(x)
lel=Preri+ - + B r

Since Jij‘“l* A (X), oy Vi(X), 0, oy O),y <me' + -+ + e, are linearly
independent, (4.2.1) follows immediately. Thus, the proof is established.

As a consequence of Theorem 4.2.1, we have

THeOREM 4.2.2. Let F, S, S, and T be defined as in Theorem 4.2.1. Then
FeC(SuS) if and only if

50 D Bt D)

K Bi+1 s Bs
= Dh... Db ( Y Cern, iDz‘) (Z cm.D,) pa(w!)  (422)
i i=1

i=1

for By, o, Bi)<(n,..n)eZ" and By + - + P <0
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Proof. If FeC'(Su S), then

s Br+1 s Bs
BB = (% cwrnali) o E i) pu)|

where DP+i...DFp(x)|; is a polynomial of coordinate degree
ne' + --- +ne*. Hence, (4.2.2) holds for (B, .., Bx)<(n,..,n)eZ* and

Berit - +B<r
On the other hand, suppose that (4.2.2) holds. Then

. Lo fp st
DYt DD -+ DY pu(w!)

+1 s
Afl...AﬁkA£k+1 AE A, .., 0)

and

5 Bik+1
Dllil"'ng<zck+1,ka+l) (ZC31D> pn )

n!
ABk+1 Agk

T (n—net — -+ —ne*)!

X 3 b gy AT AT R - R, oy
lol =Br+14 - +Bs ‘

n!

Invoking the definition of the difference operator 4% ... 4% and the inver-
sion formula in Theorem 3.1, we have (4.2.1) for B, .+ --- +f.<r.
By Theorem 4.2.1, we conclude that Fe C’(Su S). Thus, this theorem is
established.

Actually, the idea used in proving Theorem 4.2.2 can be applied to prove
its generalized version, which is the following result, where the notation

n k, r—{(als- 9as)ezizogaj<r5j=k+1,...,5}
will be used.

THEOREM 4.2.3. Let F, S, S, and T be defined as in Theorem 4.2.2. Let
NicTIs,i=1,.., 2% be lower sets such that R* N3, i=1,., 2%, are mutually
disjoint and ), R°*N’=M,, «.r- Then Fe C'(Su S) if and only if

Dit---DRDRy - DEB" (W)
s B+t s Bs )
=D’fl---D€k(Z ck+1,,-D,~) (2 cuD)) W) (423)
i=1 i=1
Sfor B=(By, ... B.YeNs, i=1,.., 2%
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ExaMmPLE 4.2.1. Let s=2, and S=(w', w2 w’ w*> and S=<(w', w?
u®, u*) be as shown in Fig 4.2.2, where the Bézier nets of p, and p, are
displayed. Write u® —w! = ¢ (w?> —w') + ¢,(w> — w!). Then we have

FeC(SuS8)if and only if
ﬁ,-():a,-o, l—’:O, 1, 2, 3,
FeCY(SuS)if and only if
d;0= g, i=0,1,2,3,
and
dy=an+c(j3ao—a;_1 o) +(1—j/3)a;,1,0—a;0)
+ ca(ay — a50), Jj=0,1,2,3.
ExaMPLE 4.2.2. Let s=2 and n=(5, 5). Furthermore, let S and § be

the same as in Example 4.2.1. Define F|s=pss) and F|r=ps s, Then
FeCYSuS)if and only if
D5§~w1 Dai—wlﬁ(s, 5)(“’1)
=(c;Dyz i+ ¢Dys W) (Dya_ ) pis sy{w')

for 0<f,<! and O0<f,<5 Also, if we choose Ni=N;=
{(n1,12):0<n,<2,0<P,< 1}, then Fe CH{Su S) if and only if

D% D% s s(w)
={¢;Dy2_y2i_wit+cDys_ WJ)BZ DZ]L P, 5)(wi)
for (B, Bo)e N, i=1,2.

w? w'
30,230 231 2932 ﬁ._ass
a3y
a32 ~ - - N
G20 920 el21 %22 523
w
Qg3 az;
®
ﬂzz' G104810 211 g2 L¢3
a ayy
3,
arzg Qoo § Qoo 2901 202 o3
wl W’
Az by Qo1
Qo2
ao3
w3

FIGURE 4.2.2
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4.3. The Mixed Partition Case (Triangles and Parallelograms)

Let S=<u’u',u?> be a triangle and S=<v!, v3 Vv, v*) a
parallelogram in R% For xeR? let A(X)=(4o(x), A;(x), A(x)), with
Ao+ A, +A,=1, be the barycentric coordinate of x with respect to S,
v(x)= (vl(x) v,(x)) the barycentric coordinate of x with respect to S. Let
T=SnS. We consider only two cases: (1) 7= {w}, a common vertex of
S and S, and (2) T=(w', w?>), a common edge of S and §.

Let us first study the case where T'= {w!, w?> (cf. Fig. 4.3.1). Rewrite
S=<(w', w? u?) and S=<{w! w? v3, v*). Assume, without loss of
generality, that

ll(wl) = 0 = Vl(wl)
AW =1=v,(w?)
Ay (x) =0 =v,(x), xeT.

Also, write v —w!=c,(w?—w!)+c(u*—w!). Let F be a piecewise
polynomial function defined on Su S by

Fls=p(x)= Y azd3(Alx))
|Bl=n
;‘1’513+

and

Fls=p, )= 3, a4 (v x)).

o< (n,n)

Furthermore, define another degree raising operator R by

Bo LB iP)
Rag=——agz_p+—az_ +—
ST TRV TRt The
We are now ready to state and prove the following resuit.
wt v
u? v
w! ;uz v3

FiGURE 4.3.1
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TueoreM 4.3.1. Let S={(w',wiu®> and S=(w', wiv3, v*>. Then
FeC(SuS)ifand only if

Agdj():(CIA10+C2AZO)kRkan»j,]',O JSO, vaey n,kér.

Proof. For 0<k<r,

Y A4%6,47V(v.(x),0)

< (1, 0)

Dk . _
v37w1pn(x)|T'——(m

and

(cl‘l)w2——wl + CZD zwwl)kpn(x)‘T

( Z Cy -Dﬂz wlDzzzwx)pn(x)
ivi=%

{ |

” c?ﬁ Y ApABa L AX))

=k R L

n!

T

T

k!
=G m 2 2 AR ABasdh elx). A1), 0)
[B|=n~— k f}’l k

B=1{Bo, 1,0
n! k! s
oo ~ X 57 CABARR a8 (o(x). 21(x). 0).
: 1Bl=n |yl=k "
B=(Bo, 1,0)

Therefore, Fe C’(Su S) if and only if, for 0<k<r,
Df3~w1ﬁn(x)|T=(CIDWJWWI+62Dw37wl)kpn(x)i’f
which gives the required result if we note that vi(x)=A,(x) for xe T and

$O(v(x), 0) =B, ; 01 — A1(X), A4(x), 0). This completes the proof of
the theorem.

ExaMpLE 4.3.1. FeC(SuS) if and only if
do=0a,_j ;05 j=0,.,n
FeCYSuS) if and only if

dp=0a,_, 0 j=0,..,n

and
A . . N
dy=a,_j;o+cidwlmna, ;; 10+ —jn)a,_;_ ;0)

+ CZA2O(j/nan—j,j~1,0 + (1 —j/n) d, _ji_1.j0, j=0,..,n
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wt V3
ot
o
v? vt
FiGure 4.3.2

We now study the case where T=Sn S={w'} (cf. Fig. 4.3.2). Rewrite
S={(w!, u', u*) and S={w', v2, v*, v*, and let F be defined as beforc.
Also, let

vZ—w!=c,(u' —w") + c,(u® —w')
and
v —w!=cy(u! —whH)+c,(a®—w!).

Then we have

THEOREM 4.32. Let S=(w' v’ u’) and S=(w',v%, v’ v*). Then
FeC'(SuS) if and only if

— ' (n— !
A5y =PV DR ¢yt a

nt(n— B, —B,)!

X (cqd i+ c450)" a, B1— 2.0

for B+ pBr<r.
Proof. For 0< f,+ B,<r, we have
Dph_ D% B.(X)|r

n! n! 7
_ ! Z A?lﬁgzd ¢(n—ﬁ1,n—lfz)(v(x))
(=B (=B acu 51— o

n! n!

T (=B (n— B!
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Hence,
(ClDul ~w"+C2Du2r 1)ﬂ1(63 ul— w1+c4 u? 1) [)n(x)Il

n!
(n—f—B>)!
x Z (01/110‘*'024120)ﬁ1 (03/1104‘04420)/;7' a«,-¢f: AN
y=n BB
n!
:m( Aio+ c2450) (c3410+ c440)P a, B 20,0

It follows that Fe C"(Su S) if and only if
Dy Du L B(X)]s
= (chul—w1 + c2Du2- wl)ﬁ1 (CBI)u1 ~w! +C4Du2 wl)ﬂzpn(x)i'f

which completes the proof of the theorem.

Exampik 4.32. FeC(Su S) if and only if
G, 0,0= 40,05

FeCY(SuS)if and only if

o0 = an,0,0a
Gio=(1—c;—c))a, 00+ C1a, 1 1 0+C2a, 1015

and
doi=(1—=c3—c4)a, 00+ 30,1 10F Cally101-

5. VERTEX SPLINES AND SUPER SPLINE SPACES

In this scction, we are going to construct vertex splines on a given sim-
plicial or parallelepiped partitioned region in R°, where s = 2, and a mixed
partitioned region consisting of triangles and parallelograms in R? by using
the results obtained in the previous sections. Before going into the details,
let us first describe these regions and give a general definition of vertex
splines and introduce the notion of the related super spline spaces that will
be applied in the next section for L? and /° approximations with inter-
polatory constraints.

A simplex with k + 1 vertices in R* and positive k-dimensional volume is
called a k-simplex, 0<k<s, and a point will be called a O-simplex for
consistency. For any s-simplex S = (v’ ..., v*), each k-simplex {v®, .., v*),
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where 0<iy< --- <i,<s,is called a k-facet of S if {(v®, .., v¥) <3S, the
{(s—1) boundary of S.

A parallelepiped in R° with positive k-simensional volume is called a
k-parallelepiped, 0<k<s. Similarly, a point will also be called a
O-parallelepiped. For an s-parallelepiped S={(w', ., w?> <R, an (s—1)-
parallelepiped (W™, .., w2 "'>, where 1<i; < --- <ip-1<2%, is called an
(s —1)-facet of S if it is a subset of 8S. For k=s—2, ..., 0, inductively, a
k-parallelepiped {w/, .., w3, 1 <j, < -+~ <jx <25 is called a k-facet of S
if it is a subset of the boundary of some (k + 1)-facet of S.

DEFINITION 1. A region D < R® which is the union of a finite number of
s-simplices (or s-parallelepipeds, respectively) S, ..., Sy is called a simpli-
cial (or paralielepiped, respectively) partitioned region if it satisfies

(1) inl(S;)nint(S;) =&, i #j;and
(ii) either S;nS;=F or §,n S, is a k-simplex (or k-paralelepiped,

respectively) which is a common k-facet of §; and S; for some Kk,
0<k<s—1.

DEFINITION 2. A mixed partitioned region D<=R? is the union of a
finite number of triangles and 2-parallelepipeds (parallelograms) S, ..., Sy
which satisfies

(i) int(S;) nint(S;)J, i #J; and
(ii") either S;nS;= & or §;n S, is a point which is a common vertex
of §;and §; or §;n S; is a common edge of §; and S;.

In this paper, we will not study vertex splines on a mixed partitioned
region in R’ s > 2, which contains other convex hulls such as prism.

Let D<R® be a region considered in Definitions 1 or 2 above. For r,
deZ  with 0<r<d, let

"= S7(D) = {feC’(D)Ifls,E”fi(Si)’i=1"“’ N}

be the multivariate spline space of degree d and order r of smoothness on
D, where if S, is an s-simplex, 73,(S;) is the polynomial space of total degree
d, and if S; is an s-parallelepiped, =5(S;)=7}(S,) is the polynomial space
of coordinate degree d= (4, ..., d).
DermNiTion 3. Let
St=S87(D)={ fe §,(D): fe C*”~"" across each j-dimensional
manifold of the partition of D, 0 <j<s}.

S7, will be called the space of super splines.
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Remark 1. For s=1,S,=85",.
We are now ready to define vertex splines.

DEFINITION 4. Let 0<k<s. A super spline fe V5 < §(D) is called a
k-vertex spline if there exists a k-simplex or k-parallelepiped X such that
the support of f'is the union of all cells (simplices or parallelepipeds) in D
with K as their common k-facet and that f or one of its first or higher order
partial dervatives is nontrivial on K. The union of all V3, k=0, .., s.is the
collection of all vertex splines in S7,(D).

Remark 2. The notion of vertex splines was first introduced in [11],
where only bivariate O-vertex splines were studied. We will see that vertex
splines always exist if we assume d 2 2°r + 1. In general, a vertex spline with
degree d < 2°r may also be constructed on a simplicial region D with some
restriction on the geometry. See [11] for s=2, r=1, and d=4, and [10]
for s =2 and arbitrary 4 and r.

Remark 3. For d>2°r+1,-an element in S, restricted to each s-sim-
plex of D can also be considered as a Hermite element with directional
derivatives at the vertices instead of normal derivatives at points inside the
k-facets of simplex 0 < k < s. See [22, 247 for references on Hermite elements
in R’. Furthermore, adopting the notion of vertex splines instead of finite
elements, we may consider finite element analysis from the viewpoint of
approximation theory. We hope that vertex splines will then play an
important role in cross-fertilizing the two important fields of approxima-
tion theory and finite element analysis.

5.1. Simplicial Partitioned Regions

Let us first establish the following theorem on the existence of vertex
splines on any given simplicial partitioned region by outlining the construc-
tion procedure.

THEOREM 5.1.1. Let d=2°vr+1,r=0, and let D be a given simplicial
partitioned region. For each k-simplex T, in D, 0 <k <s, there exisis at least
one vertex spline fe V5 < 8%, supported on the union of those s-simplices of D
that share T, as the common intersection, with only one exceptional case:
there is no nontrivial 2-vertex spline in Sy(D), where D < R%

Proof.  We start with the simple case where s = 2. For completeness, we
include the construction procedure of 0-vertex splines studied in [11].
(i) Construction of V< S’,, D =R~

Let v! be a vertex (or O-simplex) of D and S,={v', v"7, v»"),
v=1,.., 1 be all the triangles (or 2-simplices) of D which share v' as the
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common vertex. Without loss of generality, we assume that S, and S,

share an edge <v',v*')> (or l-simplex) as their intersection, where

v>V=v"*! (and S,,,:=S; if v' is an interior vertex). Let F be a

piecewise polynomial function supported on |J)_; S, and defined by
Flg= Y ay¢l, v=1,.,1L

lof=d
To determine Fe S', we specify its Bézier nets a?, as follows:
(a) We require that
DPF(v')=cy, Bl <2r (5.1.1)
and
DFF(v**)=0=DFF(v*"),  |BI<2r, (5.1.2)

where {c,:|f|<2r} is a parameter set of real numbers which are not all
ZET0S.

Let NY = {(a,,0, %3): 0, + 0y + a3 =d, d— 2r<o;<d},j=1,2, 3. Then it
is clear that the requirements (5.1.1) and (5.1.2) uniquely determine the
Bézier coefficients a?, for ae NYUNSUNY, v=1, .., ], by the application
of Theorem 3.1.2.

(b) For F|g, we requirce that

DBl Dﬁz

vl vyl 2wy

where N, = {(B1, B2): 2r <Bi+ B,, 1 <r, B, <d—2r—1}. We also require
that

WFO) =0, (B, Ba)e N, (5.1.3)

B B2
Dvl,v_vl,val - VZ,V

F(v*") =0, (B1, B) e N (5.14)

Hence, by Theorem 3.1.3 the requirements (5.1.4) and (5.1.4) uniquely
determine the corresponding coefficients @;. Now we obtain

DEZI,V+1_vl.v+lD“8,12_‘,l.vHF(vl’v+1)7 (Bla ﬁZ)ENla

from some of the a’ which have already been determined and we determine
the corresponding Bézier nets a.*' by applying Theorem 4.1.2. Then the
coefficients a’, x€J;_, N}, where

3
NY={(ay, 0y, 03): 0, + 0403 =d, 0<oc,-<r}\ U N9,
k=1
are uniquely determined by the requirements (5.1.3) and (5.1.4).

{c) For Fls,, we require that

Dﬁl

vhv__y2v

D%, FWH=0, (B, B,)eN? (5.1.5)
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where N?={(8,, B2), B1» fo=r+1, B, + B> <d—r—1}. This is equivalent
to determining the a. with o« in

\ 3
N2={_(0‘1s9‘2:°‘3)3“1+0‘2+0‘3=d}\ (Nj UNY).
V=1
Thus, we note that the requirements (5.1.1)~(5.1.5) have uniquely deter-
mined a polynomial of total degree & on each 2-simplex S,,v=1, ..,/ for
the given data cg, | f| <2r, by the use of Theorem 3.1.5. That is, F is com-
pletely determined. Clearly, Fe C'(D) by Theorem 4.1.3 and Fe C* at v/,
vh and v*Y, v=1, .,/ so that Fe C* at all the O-simplices of D since F
is only supported on the union of these simplices. Hence, F is a vertex
spline in V2< 8,< 87,
(i) Construction of V2 S",, D =R
Let <v% v'> be an edge (or 1-simplex of D) and S, = {¥° v!, v*) and
S,=<v", v!, ¥*> be two triangles (or 2-simplices) sharing {v°, v!) as the
common edge. Suppose that F is a piecewise polynomial supported on
S, v S, defined by

Flg= S di¢d  i=12
lai=d
To determine Fe S, we specify its Bézier nets a! and a2 as follows:

(a) We require that
DPF(v)=0, 1Bl<2r,i=0,1,2,3 (5.1.6)

By Theorem 3.1.2, we know that the requirement (5.1.6) uniquely deter-
mines al, ae N7, j=1,2,3, and i=1, 2.

(b} For Flg, we require that
D D% F(W)=cp . (B Br)eN, (5.1.7)
where ¢g, 5, are constants which are not all equal to zero. We compute

Df;_voDigz OF(vo)a (ﬁl’ ﬁ2}€N17

vl v

from the corresponding coefficients a! which have been determined by
(5.1.6) and (5.1.7), and by applying Theorem 4.1.2 we may use these
derivative values to determine the corresponding a2. We also require that

Di DB F(v)=0, (B, B)eN" i=1,2 and
Dl DI F(V)=0, (B, B)eN"i=12

vl

(5.1.8)
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Then the coefficients a’, a e N} ,j=1,2,3,i=1, 2, are uniquely determined
by the requirements in (5.1.7) and (5.1.8) along the line of Theorem 3.1.3,

(c) For Flg, i=1,2, we require that
Dl oDU_oF(¥)=0,  (By, f2)e N~ (5.19)

Clearly, we can see that the requirements in (5.1.6)—(5.1.9) uniquely
determine the polynomials F |5 and F|g, by the application of Theorem

3.1.5 for the given data {cg 4,: (B, .)€ N'}. Hence,F is completely deter-
mined. Moreover, FeC’(D), by Theorem4.1.3, and FeC¥ at v,
i=0, 1,2, 3, because of the requirements in (5.1.6). Thus, Fe C*" at all the
0-simplices of D. Therefore, F is a vertex spline in V2 < §7,< .

(i) Construction of V3< 87, DR

Let d>5if r=1 and d>4r+1 if r>1. Let (v° v!, ¥>) be a triangle
(or 2-simplex) in D and F a piecewise polynomial function with support
KO, v, v2y. Write F=Y,,_ 44,92 To determine Fe S7, we specify a, as
follows:

(a) We require that
DPF(v)) =0, [Bl<2r,i=0,1, 2. (5.1.10)

(b) We require that

Df DI (F(v)=0,
DRt DB F(v)=0, (B, B,)e N (5.1.11)

D _ D% L F(¥°)=0,
(c) We require that
Dl D% F(¥)=cp g, (Bys fr)e N2 (5.1.12)

By Theorem 3.1.5, the polynomial F on (v° v! v?) is uniquely deter-
mined by the requirements (5.1.10)-(5.1.12). That Fe C* at v/, i=0, 1, 2, is
clear from (5.1.10), and Fe C'(D) from Theorem 4.1.3. Hence, F is in
V2icS,c S

The procedure in constructing bivariate vertex splines in V2, 2, V2 can
easily generalized to the higher-dimensional setting. Let us describe the
general procedure for constructing vertex splines in Vi_cS‘:,(D), DcRe,
s>2 0<k<s:

Fix a k-simplex T3 of a given simplicial partitioned domain D and let
Sys S, be all those s-simplices of D which share T as their common
k-facet. Write S, = (v*°, ., v**>, v=1, ., I Denote by T}, i=1, ..., [, the
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Jj-simplices of J._,S,, j=0,..,s—1. Let F be a piecewise polynomial
function of total degree d>2° + 1 supported on ()} _, §,. Write

Flg= Y a, Py s v=1,..,1

tai=d

In order to have Fe §’, we specify its Bézier net a!, as follows:

{a) Forj=0and each Ty, i=1, .., [,, we require that

0 if To# TS

DPF(Ty,) = .
(Ta) {Cﬂa if Ty=T,

for [BI<2° ', (51.13)

where {cz:|B|<2°"'r} is a parameter set which contains at least one
nonzero element. Let Nojz{ocels“:[od:d, Go+ -+ g+ F
e, <2}, j=0, ., 8

(b) For j=1,.,s—1 and each T,,i=1,.,/, we let §,,
ME {n; 1y .y Ny iy} e those s-simplices of S,, v=1, ..,/ which share T);
as their common j-facet. Since there are (5%]) choices of j+1 indices
{ug, .., w;} from the index set {0,..,s}, we may enumerate the (5%}
choices by any ordering, and for each u, 1 <u<(511), let

N ,={0eZ " |a|=d a,, + - +0a,<2°7"'r},
where {u, ;, .. u;} = {0, .., s}\{uo, .., u,}. Now, for a given s-simplex S,,,,
write Ty = (¥v™™, ., v™¥), m=n;,, with a fixed vertex v™*. We require

that

0 if T,#T;

5.1.14
g i T=T (.1.14)

DEF(v+) ={

for fec, N,, where

ugt Y jio

j—1
Nji=Nj,u\<U k_()+l)Nr,u>9
t=01guxg :+1

t

and {c;: fec,N;} is a parameter set which contains at least one nonzero
element. For the other simplices Sy, k€ {n; 1, ... 1 4}, We compute
DPF(v™*“) from F|g, and then use these interpolating data to determine
the corresponding coefficients of F|g, by applying Theorem 4.1.2.
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(¢) Forj=sandeach S,,v=1,..,/ we require that

0 if S,#T%

: 5.1.15
¢y if S,=T; (G-L15)

DEF(v-?) ={
for fecyN,, where

NS={oceZ”1:|oc|=n}\(SU1 U N,,u>

! 01<"<(t+1

and {c;: fecyN,} is a set of real numbers containing at least one nonzero
number.

By applying Theorem 3.1.5, we can see that F is uniquely determined on
each S,,v=1,..,1/ since it is easy to verify that {N, :1<u<(if]),
0<t<s—1} can be arranged as lower sets attached to the vertices
v ., v Also, that Fe 5; is guaranteed by the requirements
(5.1.13)—(5.1.15) and Theorem 4.1.3. This establishes the theorem.

1° For a simplicial partition region D<= R’, r=0 and d=2°r+ 1, we
construct basic vertex splines which constitute a basis of the super spline
space 57, as follows.

2° For each O-simplex T, ;, i=1, ..., [, of D and for each ye Z?, with
lp1<2°7'r, we let VY e Vi S’ with support given by the union of those
s-simplices that share T,; as their common O-facet with parameters
cp=0,5, IB1<2° 1y, where 0,5 1s the usual Kromecker delta; that is,
0,5=0for B#yand =1{or f=1.
3° For each j- 51mplex Wi i=1,..,1;, of D and for each ye N, let
V7, be an element of V5 < S, with support given by the union of all those
5- snnphces of D that share T); as their common j-facet, and with parameters
cp=0,5, feN ,,,]= 1, .., 5~ 1, i=1, ../, where N = Cuo iy N e

For each S,, v=1,..,/ of D and ye N, let V? e V< §’, with S, as its
support and parameters c;=d,5, fEN.

Let B be the collection of all vertex splines so constructed. Clearly, B is
a linearly independent set of functions in $7,. In fact, we have

THEOREM 5.1.2. B is a basis of S7,.

Proof. We need to prove only that B spans $7,. For each fe S, we
claim that f is a linear combination of elements in B. Indeed, let
fi=f—3h Z,y,szs_l,DVf(v") V3, Then f, € §7, and satisfies D’f,(v') =0,
for [y|<2°~ ri=1, ., ly. Also, let f,=f,— Y 1ZVGM,D S (i) P
Then f, e S’ and satlsﬁes Dfy(v))=0, for |y| <2°"!r,i=1, ., ,, as well as
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D}, fo(v"iwun) =0, for ye N, i =1, ..., I,. We repeat this procedure until we
have an f, in S, that differs from f by a linear combination of elements in
B and that satisfies D'f,(v)) =0, for |y| <27 r, i=1, .., Is; D (vVie) =0,
for yeNui=1 .1, j=1.,5—1; and D}f(y"*U)=0, for N,
v=1, .., L On the other hand, for each v=1, ..., /, f(x]}|s, is a polynomial
of degree d satisfying these zero interpolation conditions. By Theorem 3.1.5,
fils, =0 for v=1, .., L Hence, /=0 and this completes the proof of the
theorem.

Moreover, we have the following result concerning how well the super
spline subspace $’; approximates.

THEOREM 5.1.3.  Suppose that fe C*+ (D) with d =2 + 1. Then
inf | f—5(o<Ch™*' max |D|,

seS(D) |Bl=d~1

Jor some constant C independent of h and f, where h is the maximum of the
diameters of the simplices S,,v=1, .., L

Proof. Let M: C?*'(D)— §7, be defined by

MIx)=Y S D) Vix)
i=1 |yl

s- 1 4

+ Z Z Z Dgf(vn/f,ug(m) V}[(}()

j=1 i=1yelN;
!

+ Y Y DyfOP) Vix)
i=1 yelNg

for any fe C?*Y(D). Clearly, M is an interpolation operator and by induec-
tion on the number of s-simplices in D and recalling Theorem 3.1.3, we can
prove that Mp=p for all per,, where n, is the space of all polynomials
of total degree <d. Hence, for any fixed x in D,

F(f)=f(x)— Mf(x)
defines a linear functional F on C¢* (D) which clearly satisfies the follow-
ing two properties:
(@) |FINISC X oh | fllk, where | fl, where | [fl,=
max, . | D*f |, and C, is a constant independent of f and d, and
(b) F(p)=0Oforall pen,

By a result along the line of Bramble and Hilbert [6] or the proof of
Theorem 5.2.3 to follow, we have

| FOUN<CR | f st

640/60/3-4
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where C is a constant independent of f, d, and x. That is,
| f(X)—Mf()N<SCh** | fllaer,  X€D,

which establishes the theorem.
Several remarks are in order.

Remark 5.1.1. For s=2, a different formulation of Theorem 5.1.3 is
known in the finite element literature (cf. [29, 30, 211).

Remark 5.1.2. Though S7,= 5", when s=1, §7, is a proper subspace of
Sy {or s=2. For s=2 and d>4r+ 1, we can even compare the dimensions
of §7, and S7,. For a simplicial partitioned domain D < R?, let

¥ = number of vertices (0-simplices) of D,
E = number of edges (1-simplices) of D,

T = number of triangles (2-simplices) of D.

We have the following result on the dimension of the space of super splines.

THEOREM 5.14. Let r>=0 and d=4r+ 1. Then

mm§;=u+1xy+4)V+(u+4xd—4w—n+“r;”>E

(d-—3r~—2)2(d—3r—1) T

Remark 5.1.3. In a recent paper by Alfeld and Schumaker [1], the
dimension of the spline space S7(D) whee d > 4r+ 1 was determined to be

d+1)d+2) (d—r)d—r+1)
t 3

& +3d—r’-3
e A1)

dim §"(D)=

x E,

where E; and V, denote, respectively, the number of interior vertices and
the number of interior edges, and

Vi d—r

o(r)= Z Z (r+j+1—je),

i=1j=1

with e; denoting the number of edges of different slopes meeting at the ith
interior vertex.
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Let Vy=V -V, be the number of boundary vertices. It is clear that
Vg = 3. Then by using the well-known formulas

E1:3V1+ VB_37 T=2V1+ VB“Z,
it is not difficult to arrive at the following result.

COROLLARY 5.1. Let r=0 and d=4r+ 1. Then
dim S, —dim §7,= 3 (r+ 1) V,+ r(r + 1)(V 3 — 3) + o(r).
Hence, for r> 0, S, is a proper subspace of S’ unless the partitioned region
D consists of a single triangle.

Proof of Theorem 5.1.4. By Theorem 5.1.3, since

A:,:Span{Vz),-I i= 19 eey Va |'Y| <2r}
U{V}{zlzla '"3E”V6N1}U{V}2}i:i:1’ e T’VENZ}’

where

No={yeZ’ :2r<y, +7,,0<y, <r0<y,<d—-2r—1}
and

No={yeZ’ : r<y,+y,<d—r—1Lr<y, <d—2rr<y,<d-2r},

it follows that the cardinality of N, is r{r+1)/2 +(r+1)}{(d—4r—1) and
the cardinality of N, is (d— 3r—2)(d — 3r—1)/2. This completes the proof
of the theorem.

5.2. Parallelepiped Partitioned Region

We first prove the following existence theorem of vertex splines on a
given parallelepiped partitioned region for d=2°+1 by outlining the
construction procedure.

THEOREM 5.2.1. For each k-parallelepiped T, of a given parailelepiped
partitioned region D, 0<k<s, there exists at least one k-vertex spline
fe Vs < 8" supported on the union of all the s-parallelepipeds which share T
as the common k-facet.

Proof. Let us first consider the bivariate case.
(i) Construction of Vi< 5’; for s=2.

Fix a vertex (or O-parallelepiped) T3 of D. Let T, v=1, ..., /, be all those
parallelepipeds in D that have T7 as one of their vertices. Write
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T,={T2,w, w"!, w*'> v=1,.. 1, with the assumption that wo*'=w'
if T3 is an interior vertex. Suppose that F is a piecewise polynomial
function supported on (J®_, T, and

Flp= Y ayp&®, v=1,.., 1.
p<d, d)

To determine FeS’, we specify its Bézier nets ay on each T, via the
following steps:

(a) We require that

DFF(T})=cy, | Bl <2r,
DPF(w)=0, |Bl<2r,v=1,..,1,, and (5.2.1)
DFFw)=0,  |Bl<2nv=1, .1,

where {cg:|B|<2r} is a set of real numbers containing at least one
nonzero element. Let N°={(B,,B,): B+ B.<2r}u{(d—B,, B.): B+
Bo<2r}u{(By,d—Bo): Bi+Bo<2r} U {(d— By, d—Br): By + B <2r}.

(b) For F|r,, we require that
DPF(T?)=0, BeN', v=1,.,1] (5.2.2)
where N'={(B,, B,): 2r + 1 < B, + B, 0< B, <r,0<f,<d—2r+p,} and
DP=D8_ DB g

In addition, we require that

Df,_ D& _ L Fw")=0, (B, By)eN! (5.2.3)
and
Dbii _a DB F(W)=0, (B, Br)eN". (5.2.4)

By applying Theorem 4.2.2, the other interpolation conditions
D Dl pF(wW),  (B1,Br)eN, (5.2.5)

are determined by the corresponding Bézier nets of Fl,, , v=2,.,/+1,
and we may then use (5.2.5) to determine the corresponding a}’s. Let

N'={(B1, B2), (d— By, B2), (B1, d— B,), (d— By, d— Bs):
2r+ 1<+ 85,08, <r,0< B, <d—2r— B, }.
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(c) For F|5,v=1, .., 1 we require that
D8 D% Fw)=0, (8, B,)eN?, (5.2.6)

where N2= {(ﬁl’ ﬁz):ﬁigd’ i= 1’2}\‘~(N0UN1)-

Clearly, by Theorem 3.2.4, we see that F|,, is uniquely determined by the
requirements (5.2.1)-(5.2.6). Also, by (5.2.1) it follows that Fe C* at each

vertex in D and by (5.2.1)-(5.2.5) Fe C"(D). Hence, Fe S7, and has support
4

t_,T,;ie., Fis a vertex spline in V2.
(ii) Construction of V< S, for s=2.

Fix an edge (or 1-parallelepiped) T2 = (w', w?>, and let T, T, be two
parallelograms (or 2-parallelepipeds) sharing 72 as their common 1-facet.
Write T, = (w', w?, w"3, w"*> v=1,2, and let F be a piecewise polyno-
mial function supported on 7, u 7, with

Flp= Y ap¢'%?, v=12
p<(d, d)

To ensure that Fe S’ we specify the coefficients ay as follows:
(a) Set

DPF(w)=0, |B|<2r (52.7)

for we {w!, w3, wh? wh* w23 wh4l
(b) For F|,, consider the interpolation conditions

Dﬁlu wlDiZZ wl (Wl):c(m,[gz), (ﬁbﬁz)ENl; (5.2.8)

where {cz g (B1, B,)e N'} is a set of real numbers containing at least
one nonzero element. In addition, we require that

Di_ D%, L F(w9)=0
D, D% L F(w?)=0
Dh, WD% LF(w'*)=0
D% D%, LFwW®)=0
DY, DV LF(w?)=0
D, DR L F(w*)=0

{5.2.9)

VVi w

for (B, B,) € N*. See Fig. 5.2.1.
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21

w w
w12
T
T
w22 wl
wll
FiGUure 5.2.1
Furthermore, we apply Theorem 4.2.2 to obtain
Db, D% F(w') (5.2.10)

from the corresponding coefficients of F|; and usc (5.2.10) to determine
the corresponding a}’s.

(c) We require that

DA D LF(wW?)=0, (B, B,)eN? (5.2.11)
and
Dby WD%  F(w®)=0, (B, f,)eN> (5.2.12)

Hence, by Theorem 3.2.4, it is clear that F |, is uniquely determined by
the requirements (5.2.7)—(5.2.12). It is also clear from (5.2.7) that Fe C* at
each vertex, and that Fe C"(D) by (5.2.7)-(5.2.10) and Theorem 4.2.2. That
is, Fe S7, and has support given by T, u T,. In other words, F is a vertex
spline in V3.

(iii) Construction of V2< S, for s=2.

Consider a parallelogram (or 2-parallelepiped) T3 in D and suppose that

T3= (w',w’ w’,w*> and F is a polynomial supported on T3; that is,

S apdiph,  xeT}
F(x)= B<(d. d)
0 otherwise.
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To ensure that Fe S7, we specify its coefficients ag as follows:
(a) Set
DPF(w)=0, |B|<2ri=1,234.
(b} For (B, B,) e N, specify

D% .D% L F(w*)=0
Dph D% F(w)=0

and
D% D% F(w)=0
D% D% F(w')=0.

WZ—W

See Fig. 5.2.2 for the orientation of {w', w?, w’, w*}.
(c) We also require that

Dby DY FWY=cy g, (Bi, Ba)eN

wi—wt

297

(5.2.13)

(5.2.14)

(5.2.16)

where {c¢, 5, (B1, B2) € N?} is a set of real numbers containing at least

one nonzero element.

Clearly, by Theorem 3.2.4, F is uniquely determined by the conditions
(5.2.13)~(5.2.16). Also, it follows from (5.2.13) that Fe C*" at each vertex in
D and Fe C'(D) by (5.2.13)-(5.2.15). Hence, Fe §’d; that is, F is a veriex

spline in V3.

The procedure in constructing bivariate vertex splines can be generalized
to the higher-dimensional setting. We describe the generalization procedure
briefly as follows. For a k-parallelepiped T, in D, let 7, .., T, be all those
s-parallelepipeds in D that share 73 as their common k-facet. Write

wi w?

FIGURE 5.2.2
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T,=<w"!, .., w"®> with %"/, the index of w"/ with respect to
T,v=1,..,l Denote by T, i=1,..1, all the j-parallelepipeds of
{T,:v=1,.,1},j=0,..,5—1. Let F be a piecewise polynomial function
supported on {J!_, T,, and write

v=1

Flp=Y a3l v=1.,1
B<o(d)

where o(d)=(d, ..,d)eZ’_. To ensurc that Fe Sf,, we specify its Bézier
nets ay as follows:

(@) Forj=0 and each T, i=1,.., 1, let T,,, me {ny; , .., No; yoi) }
be the s-parallelepipeds in D which have T, as their common vertex. We
require that

0, if Tu#T:

52.17
s if Tu=T; (5:217)

DPF(To) =
for |B|<2°'r, where {cz: || <2° 'r} is a set of real numbers containing
at least one nonzero element. Let N, ,={fn’/+ ((1 -n_j)/2) a(d), |B]<

2571}, j=1,..,2%, where n’/ denotes the index of w/ with respect to
T=<(w!, ., w*

(b) For j=1,.,5s—1, and each T, i=1,.,[, let T,, me
{nji 15 o My 0y }> e those s-parallelepipeds T, v =1, ..., / which share T); as
their common j-facet. For T, there are 277/ (,* ;) J-parallelepiped facets.
We enumerate these 2°~/(,* ;) j-facets by any ordering and denote the uth
Jj-facet by {w*, .., w*> where w* =w*(u), i=1, .., 27. Then the index #*
of w4, i=1, ..., 2/, has s —j equal components, say,

Ul —_ 2 —
M= == or -1

for v=1, .., 5—j, where 1<i,<s since {w",..,w*?> is a j-facet of T.
Hence, we may set

—pul
Nj!uz{/)’*n“l—i- xo(d): B, + - +ﬂ,~svj<2s“j*1r}
and
) =127 (2,)
Nj,,,=Nj,u\ U U Ny
p=1 u=1

FixaT,, me {nﬁ,,,_ s M 150y 1> @nd assume that T, = {w™™, ., w™*“/> for
some u, 1 <u<2°7/(,? ). Then we require that

ljﬂF] - (wm,ul) 2{ 0 , if -T,z?/: Tk

g if T,=T; (5.2.18)
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for feN,,=(R3¥) "' N,,, where {cs: fe(RID)"' N, ,} is a set of real
numbers Wthh contains at least one nonzero element. For the other 7'’s,
PE{R; 15 My i} \m, We obtain DPF|, . (w? “P)) from the correspondmg

coefficients of F|; and we use them to determlne the coefficients of F|,
by applying Theorem 4.2.2, where e (RZD) ™' N, .

ui(p)
(c) Forj=sandeach F|,, v=1, ..,/ we require that

it T,£Ts

5.2.19
if T,=T% (52.19)

. 0
DPF(w»1) :{ ,
Cp

for pe N*={aeZ’ , a<a(d)NU; L BTG N,

By applying Theorem 3.2.4, we see that F |, is uniquely determined by
the conditions (5.2.17)-(5.2.19) and that Fe C* 77" across each Jj-dimen-
sional manifold of the partition is confirmed in view of (5.2.17) and
Theorem 4.2.2. Therefore, Fe S‘:,; ie, Fis a vertex spline in V3. Thus, we
have completed the proof of the theorem.

It is now easy to construct the basic vertex splines for a given
parallelepiped partitioned region D provided that r >0 and 4> 2% + 1. The
procedure is as follows:

1°  For each O-parallelepiped T, in D, i=1, ..., {,, and for each y with
|7] <27 'r, let U}, be in Vi< S; with parameters ¢;=6,,, || <2°7'7.

2° For each j, j=1,.,5s—1, and each j-parallelepiped 7, in D,
i=1,..,1, and for ye(RfoJ{)) 'N ju(ﬂ), let Ul be in V<8, with
parameter c;=96,5, fEN,, = (Rul(m) Nj,u(ﬁ).

3° For each s-paralleleplped T,inD,v=1,.,/[ and ye N°, let U be
in Vic S‘; with parameters c; =04, f € N°.

Let B be the collection of all vertex splines U’ and U}, constructed as
above. Clearly, B is a linearly independent set in S7,. Foﬁowmg the same
argument as in the proof of Theorem 5.1.2, we have

THEOREM 5.2.2. For a given parallelepiped partitioned region D, B is a
basis of S

To study the approximation order of S§7, let us take a detour by
considering the Banach space C**™K) with norm {[v];, .=
Piai<k+m D0l ,, where KR’ is a closed and bounded set with
Lipschitz continuous boundary. Let C**™(K)/n, be a quotient space with
quotient norm | || - |||, ,, defined, as usuali, by

ol krm=i0f {|84+plermy for 6eC*7/my.
penk
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Denote by [#lc. ;=X |ajcks; | Dvle for 6€C*""/n,. We need the
following result, namely which may be used as a substitute for the result of
Bramble and Hilbert [6] in proving Theorem 5.1.3. The following lemma
is required.

LEMMA. There exists a constant C such that

olleensC(E 161)  Sorall secrm,
j=1
Proof. Let N=dim(rn,)=(***) and {g;: 1<i< N} be a basis of the
dual space of m,. Let us view g,, 1<i<N, as linear functionals on
C**™(D) by the Hahn Banach Extension Theorem. Observe that for a
pemny, we have g(p)=0, 1 <i< N, if and only if p =0 since {g,, I <i< N}
is a dual basis of ©,. We claim that there exists a constant C such that for
all ve C*+™(D),

m

19k < C( X 0l % 20 ).

i

Indeed, if this were not true, then there would exist a sequence {v,}, v, in
C**™(D), such that

(i) llvlesm=1, and

m N
() fim (3 okt T 1 o) =0
TR Nj=1 i1

Since | v/lx41 <[V lxsm=1 {v,} is @ bounded and equicontinuous family
in C¥(D) and by the Ascoli Theorem contains a subsequence {v,} such
that

lim || v, — Vol =0,

where voe C¥(D). Since lim, . |v;/,,;=0 by (ii), we see that
{v,}eC**'(D) is a Cauchy sequence with lim,_ ., v, —vols.1=0.

Therefore, || D*vql|, =tim, , , || D%, ||, =0, |a|=k+1. It follows that
vy € T,. Now, by (ii)

gdve)= lim g(v,)=0, 1<i<N,
which implies that v,=0. Again, since lim,, , >7  |v,,,,;=0, {v,}

is a Cauchy sequence in C**™(D) and lim,_ . v, —vollxsm=
lim, , . |lv,—0.,,=0 and this contradicts (i).
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For each ve C* "™(D), let p,en, such that g (t+p,)=0, 1<i<N. It
foliows from the above claim that

el e m<Ev+Poliesm

<C<Z o+ p iy + Z Ig,-(v+Pv)|>

i~ 1

=C Z |U|kw’-

j=1

This completes the proof of the lemma.

With the aid of this lemma, we can verify

THEOREM 5.2.3.  Suppose that fe C*D), d=2°r+1, and s> 1. Then

inf | f—sll,<Ch*"' max [ Df |,

se Sy del<|a|<sd

where h is the maximum of the diameters of all parallelepipeds in D and C
is a constant independent of [ and h.

Proof. Let us define a map M: C*D)— S7(D) by

o

Mfx)=3 Y Df(Te) Uhlx)

i=1 |y'<2”1
s—1 Jj
+T YT DY) v
i1 ye Ny
+ Z Y. Dif(w!) Us(x).
v—1 yeN*

Clearly, M: C*YD)— S’(D) is an interpolation operator and it can be
shown that Mp=p for any pen, by verifying that Mp interpolates p on
each parallelepiped, using induction and applying Theorem 4.2.3.

For a fixed x e D, consider

F(f)=f(x)—Mf(x).
It is clear that F(f) satisfies

1) F(OISC, T4 k| f], for some constant C; independent of /
and # and

(ii} F(p)=0for all pemn,.
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Let us first assume that £ =1. Clearly,

sd

[ FNO=IF(f+pI<C ) | f+pli=Ci | f+plu

=0

for any pem,. It follows that

IFON<Co Il 1 sa

By the above lemma,

" (s—1)d
| FOONSCa<Ca X 1 flay=C  max D |l,.
=1 d+1<|B|<sd
Now for any 4 >0, we simply let x = hy, g(y)=f(hy), and D = {y~: hyeD}.
Then the maximum of the diameters of all parallelepipeds of D induced
from that of D is 1. Thus,

(s—1)d

| F(NOI=1F(@I<C, ¥ 18lay

j=1
(s—1)d )

=C, Z hd+]|f|d+j
j=1

<ChY max | D).

d+1<|B|<sd
which completes the proof of the theorem.

5.3. Mixed partitioned regions in R*

Let D be a mixed partitioned region in R%. We first prove the existence
result by outlining the construction procedure.

THEOREM 5.3.1. Let d=4r+1,r=0. For each vertex (or edge) of D,
there exists at least one vertex spline in S’; with support given by the union
of those cells (triangles or parallelograms) which share the given vertex (or
edge). In addition, for r =2 and any given cell (triangle or parallelogram),
there exists at least one vertex spline in S', whose support is this given cell.
However, there is no nontrivial function V3 in SY(D) whose support is a
single triangle.

Proof. (i) Construction of Vic S,

Let V' be a vertex in the mixed partitioned region D and let S,,
v=1, .., [, be the cells (triangles or parallelograms) in D which have V as
one of their vertices. Let T, i=1,..,1,, and T}, i=1, .., ;, be all the ver-



MULTIVARIATE VERTEX SPLINES 303

tices and edges of |J°_, D,, respectively, and F be a piecewise polynomial
supported on {J!_, S, such that

Y aLél if S, is a triangle
Flg=('"1"7
Y bydtY  ifS,is a parallelogram.
B<(d d)

To ensure that Fe $", we specify the Bézier nets of Flg, v=1, ..,/ as
follows:

(a) For TY, i=1, ../, we require that
0 if TO%V

5.3.1

DPF(T)~
for | B1 <2r, where {cg:|B|<2e} is a parameter set of real numbers which
are not all equal to zero.

(b) Foreach T}, i=1,..1,, there are four cases to be considered:

(1°) only one cell intersects with T'!; (2°) two triangles share T'}; (3°) two

parallelograms share 7}; and (4°) one triangle S,, and one parallelogram

S,, share T'}. For the first three cases, our interpolation conditions of F are

the same as those in the proofs of Theorems 5.1.1 and 5.2.1. For the final
case, we let T; = (w', w*) and require that F|s, satisfy

D% DP  Fw')=0 (5.3.2)

w2 —wl ™y wl

for (B, B,)e {(ﬂnﬁz); 0<B,<r,0< B, <d—-2r, ﬁ1+ﬁ2>2”}7 where
S, =W, w2 v). Also, we obtain, by using Theorem 4.3.1,

Dl D% Fls (w'), (5.3.3)

wl_ w1

where (B, )€ {(B1, B2):0<Br<r, 2r<P+ P, 0SB <d—2r+p,}
from the corresponding coefficients of F|s, and use (5.3.3) to determine
appropriate coefficients of Flg, .

(¢} For each S,,v=1, .. [ there are two cases to be considered:
{1°) S, is a triangle and (2°) D, is a single parallelogram. Our interpolation
conditions on S, for cases (1°) and (2°), are the same as those in the proofs
of Theorems 5.1.1 and 5.2.1, respectively. Clearly, F|s, is uniquely deter-
mined by the conditions (a) through (c) by the application of
Theorems 3.1.5 and 3.2.4. That Fe C* at each vertex follows by observing
(5.3.1) and that Fe C"(D) may be confirmed by applying Theorems 4.1.2,
4.2.2, and 4.3.1. Hence, F is a vertex spline in S

(ii) Construction of V2< §/,

Let T=<w', w?) be an edge of D and let S,,, S,, be two cells that share
7. Then there are three cases to be comsidered: (1°) §,, S,, are two

vy
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triangles; (2°) S,,, S,, are two parallelograms; and (3°) S, is a triangle and
S,, a parallelogram. For the first two cases, we have shown the construc-
tion of V2 with support given by S, uS, as in the proofs of
Theorems 5.1.1 and 5.2.1. For case (3°), let F be a piecewise polynomial
function supported on S, U S,, with

FlSv1= Z aa¢:’
|ot) ==d

I”IS\Q: z bﬂ¢(ﬂd,d)’
B<(dd)

where S, = (w!, w?, v*> and §,,= (w', w?, v!, v*. To ensure that Fe S,
we specify the Bézier nets of F LSVZ and F| s,, as follows:

(a) Forve {w!, w2 v! vZ v?} we require that
DFF(v)=0, lo] < 2r.
(b) For F |s,» We require that

B B i
lez wle32_wIF(w )=Cﬁ

for (B, B2)eN'={(B1, B,):0<B<r, By +$,>2r, 0SB, <d—2r—1},
where the cy’s are parameters which are not all equal to zero. We may then
determine b; 1y, 0<k<r, 2r—k<j<d—2r+k of FISVZ. Also, we impose
the conditions

ph D% F(v*)=0
and

D/31

wl _ 3

D% F(v*)=0

for (B, B,)e N'. For Fls,,, we require that
D _.D3_ . F(v')=0,
Dy Dy .F(v')=0,
and

Dr 1 DR L F(v?) =0,

w2 _y2

for (B, B,) e N".
(c) For Fis, , we require that

fol lez

[

F(¥*)=0
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for (B, B)eN*={(f1, B2):2r<fi+Po<d—r, r<f,<d—2r, r<p,<
d—2r}. For Fls, , we require that

D D F(v)=0

wl vl

for (81, B,)e N> = {(B,, B,), r<pi<d-r, r<pB,<d-—r}.

Clearly, by Theorems 3.1.5 and 3.2.4, F| Sy is uniquely determined by the
conditions above. Also, Fis in C* at all the vertices by the requirement in
(a), and that Fe C"(D) may be confirmed by the condition {b) and by
applying Theorem 4.3.1. Therefore, Fe S7,.

(iii) Construction of V2c S,

Let T be a cell of D. Then T is either a triangle or a parallelogram. The
construction of a vertex spline on 7 is similar to that given in the proofs
of Theorem 5.1.1 or Theorem 5.2.1, respectively. This completes the proof
of the theorem.

Let us now construct the basic vertex splines for a given mixed parti-
tioned region D=1{J!_, S, in R? as follows:

1° For each vertex T, i=1,..,[,, of the partitioned region D and
yeZ2 with |y] <2r, let V', be a function in V2 < §7,(D) supported on the
union of cells of D that have T, as one of their vertices with parameters
cg=2dp, |BI<2r.

2° For each edge Ty;, i=1,.,[ of (the partition of) D and
y=(y1,72)€ N, let V2, be a V2 §%(D) supported on the union of cells of
D that share T,; with parameters c;=d,, feN L

3° For each triangle T, and ye N2 let V], be in VﬁcS';(D) and
supported on T, with parameters c;=0g, ,8 eN?% and for each
parallelogram T, and y€ N>, let V3, be a function in V2 < §"(D) suppor-
ted on T, with parameters c;=0,,, fe N°.

Let B be the collection of all basic vertex splines so constructed. Then
the following results can be derived in the same manner as before.

THEOREM 5.3.2. For any given mixed partition region D, B provides a
basis of S7,(D).

THEOREM 5.3.3. Suppose that fe C*¥(D), d = 4r+ 1. Then

inf || f—sll,<Ch**!'  max |Df],

se Sy d+1<ipl<2d

where h is the maximum of the diameters of the triangles or parallelograms
of D and C is a constant independent of f and h.
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6. APPLICATIONS TO L? AND /2> APPROXIMATION
WITH INTERPOLATORY CONSTRAINTS

We now apply the vertex splines developed in Sections 5.1, 5.2, and 5.3
to least-squares approximation with interpolatory constraints. Assume that
DcR’ is a simplicial partitioned region or parallelepiped partitioned
region (or mixed partitioned region if D = R?). Let V' denote the set of all
vertices of D and I={aeZ’, :|a|<2° 'r} and I, a subset of ¥ x I which
we will call an index set for interpolatory constraints. Note that /. may
be empty. The problems of L? or /° approximation with interpolatory
constraints can be stated as follows:

(L*I,) Given a function f: D — R, find the super spline Se S(D),
where d=2°r+ 1, r =20, such that

1 f=Splpp=inf{]| f=5llp2: s€ Syand Ds(v) = DY/ (v), (v, )€ L.} (6.1)

Here || gllp.=(Jp | g(x)|* dx)"?. Note that when I, = &, Problem (6.1) is
the usual L* approximation problem. (See [8] for example.)

(*-1,) Given only sample data {(y,, f(y;), w;), i=1, .., L} with weights
w;>0, i=1,.., L, where Y=A{y,-},.LcD such that if any (v,a)el,, then
ve Y, find a super spline s,€ 87(D), d=2°r+1, >0, such that

| =5l w=inf{]| f=s5]5 w2 s€ Sy and D*s(v) = Df(v), (v, )€ 1.} (6.2)

and give a uniqueness criterion. Here, || f [, = (5, w; | f(y:)|*)"2 The
weights w={w,} may be normalized so that }* , w,=1. Usually, the
quantity of data {y,.f(y;), w;} ¥ is very large so that we will always assume
that L> M, where M denotes the dimension of $7,(D). Note that when

I.= ¢, the problem becomes usual /? approximation.

Denote by V,, i=1,.., M, all the basic vertex splines in S’;(D) con-
structed in Section 5.1, 5.2, or 5.3 accordingly. Also, let ¥’} , be the basic
vertex splines in V3 that satisfy D'Vj (u)=94,, ,0,,, where (v,a)el,.
For simplicity, we rearrange if necessary so that {V;:i=1,. . M—m}=
{(Viii=1,.., M}\{V§,:(v,a)el,}, where m= #1, is the cardinalty of
the index set .. Then, clearly Problem (L>-I,) is equivalent to solving the
linear system

[4;]c=Dh, (*)

where A,=[, V,(x)V,(x)dx, i,j=1,.., M—m, e=(cy, ... Css_,)", and
b= (b, .. bas_,)" with

b=] (fo0- ¥ D7) Vi) Vix) dx

(v,a)ele
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Observing that V,(x),i=1, .., M —m, are linearly independent, we note
that the (M~ m)x (M —m) Gramian matrix [ 4] is nonsingular and (x)
has a unique solution ¢=(cy, .., ¢y ,). We also note that A4, can be
easily computed by using Lemma 2.1.2 or Lemma 2.2.2, and b, may be
estimated by using some quadrature formula in numerical computation.
We state this simple result for completeness.

THEOREM 6.1.  Problem (L*-1.) has a unique solution S; in the super
spline space S%(D), d=2'r+ 1 and r =0, where

Si)= T DYM VL4 T cVix)

{v.o2)e I, i=1
\’Vl-th c'—_(C[>"'s CM)T:[AU] lb'

By using Thcorem 5.1.3, Theorem 5.2.3, or Theorem 5.3.3, we easily
obtain

THEOREM 6.2. Let d=2° + 1 and consider fe C**Y(D) if D is a simpli-
cial partitioned region or fe C*Y(D) if D is a parallelepiped partitioned region
in R* (or a mixed partitioned region in R*). Then

1 f= S pa<ChMY,
where C depends only on the function f.

We now turn to the study of Problem (/*-1.). Again, let V,(x),
i=1,.., M —m be the basic vertex splines in S”Q,(D) as above. We will use
the notation

L=(Viy)s o Vilye )T i=1 ., M—m
and f= (f(y,), .. f(y; )" Further, let

f=r= ¥ D¥MVi.x)
(v.,a)c e
and T= (F(y,), ... f(y.))". Clearly, Problem (/*-.) can be reformulated as
follows. Determine ¢= (c;, .., ¢3; )" such that

; M-—m | H M m ‘
D Y A VI S S A (63)
il i " il 2,

e 2w (@ aumom w

Since /,, i=1,.., M —m, arc not necessarily independent, Problem (/*/.}
may have more than one solution. Following Hayes [18], we give a
uniqueness criterion as follows: Let X be the set of solutions to (6.3). Then
we consider the following “adaptive” *-approximation problem:

640,00/3-5
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(P-1,) Determine §,=Y"71"¢;Vi+2(vmyer. DF(V) V5, € S7, that
satisfies (6.2) and

M—m 1/2 M—m 1/2
(Z Ici|2> =inf{( Y |a,-|2> ,(al,...,aM_m)TeX}. (6.4)

i=1 i=1

Then we have the following result.

THEOREM 6.3. Problem (I*-1,)' has a unique solution in S',, where
d=2°r+ 1.

Proof. Let

7= {(Mz_jm VG s T aVAYD): (@ s arg )T X}

i=1 i=1
= {(ll "'lem)(ala [ aM—m)T: (al’ vy aM—m)TEX}

and #/, j=1, ..,k be a basis of the null space of (!;---1,,_,,). Then it
follows that

Y={(l--L)n*+oan"+ - +an*):0y, ., 0,€R}

where n* = (aF, .., a%_,) eX.
Hence, it follows that (6.4) is equivalent to

M~—m 1/2
< 2 IC,-|2> = min [7* +an'+ o +an®s
%1, 73

i=~1

which will give a unique solution, since #’, ..., n* are linearly independent.
This completes the proof of the theorem.

Actually, as is well known, Problem (/*-1.)’ may be solved by using the
Moore-Penrose  pseudoinverse; that is, S§;=3(, ., D (V) VG, +
M- me,V,, where ¢=(cy, ., Car_ )7 is the limit of

(- )* (4 "'IM—m)+8I)_1 (-l )™ f

as ¢ > 07" and [ is the identity matrix (cf. Luenberger [23]).

The important question is how well §, approximates f. The answer is
somewhat delicate since §, does not necessarily converge to f as the number
of sample data increases and the size of the simplices or parallelepipeds
decreases to zero. However, if the sample data are fairly dense on a subset
E of D, we may still expect §,to be close to f on E. In this respect, we need
the notation

dgy=max min |x—y'|.

xekE I<ig<L
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In addition, set
dp=min{w,;y'eE}

and let 4 be the minimum of the radii of the balls inscribed in the (simpli-
cial or parallelepiped) cells that have nonempty intersection with E.

Let £ D be a subdomain which is the union of some parallelepipeds d,,
i=1,.., L, that are parallel to the coordinate hyperplanes and each of
which contains at least one y'e E. We also need the constant C(d) of the
Markoff inequality on multivariate polynomials in the L? norm. This is
defined by

0
- Pa

C(d)= max o,

Ipala=1
s

i=1,..,

’

Q

where O is cither the standard simplex <{0,¢’,.,e") with e'=
0, ..,0,1,0, .., 0) or the unit cube [0, 1], and the maximum is taken over
all norm-one polynomials p, of degree d, which may be the total degree or
coordinate degree depending on L.

We are now ready to state the next result.

THEOREM 6.4. Let E be a subset of D with
Cd)dP < Ag.

Then for any fe C** (D) if D is a simplicial partitioned region, or fe C*(D)
if D is a parallelepiped partitioned region (or a mixed partitioned region
in R?),

Cd)
Ay
where £={f(y)}, i=1, ., L, §; is the unique solution of Problem (I*—1,),
and the constant K depends only on f.

1
I!f'ff'|E,2<K<1~ dSE/2> (5E)~1/2 hd'H,

Proof. Let
se=8— 3, Df(WVG,.
(v,a)el,
Since i
L 1/2
ls sl L [ 6= 5007 ax)
i=1"4di

- (Z (5= 52 vol(d,))m

Y
<ls—5SellynewdE /

L 1/2
; ( S (5= s)(E) — (5= 5)ya)l? voi(d,a)
i=1
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=|s—s¢] YmE,w‘SEI/2

+(z [ L L= sty
—12

y,,,ﬁtl ot
<ls— s¢ YAEw O

1/2
vol(d,-))

+dy (T”E#Q_[Ti aitl-'~£—s(s—sf) 2dt>1/2,
we have
P O o L P
or
Is=silra<(1-5 )d“> 67" Is=sel ymgin-
Hence,

I f=sell o<l f=slg2tls—sellg 2
<VOl(E)|l /=5l 5 w

C(d
+<1_ ad )d‘”) 55 (15— yepa+ I f=Stllyrs2)

<V01(E)” f_S“D ©

+2<1 C;f)cFﬂ) 55 Is—Flly.s

which, in view of Theorem 5.1 2 Theorem 5.2.3, or Theorem 5.3.3, yields
the desired result.

Remark. We may generalize the above study to L? and /? approxima-
tion, 1 < p < o0, and similar results can be established.

7. EXAMPLES OF VERTEX SPLINES

For simplicity, we consider only examples of vertex splines in S! in R?
and present their polynomial pieces in terms of the Bézier nets (see
Figs. 7.1-7.7). Pictures of these vertex splines on various supports are also
included in this section (see Figs. 7.8-7.35).
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ij—1

xi,k+2

0—0—0——0—0—20
xi,lc Xv,‘,lc+1

FiG. 7.1. O0-Vertex spline V{>?

xik—1

Palax:

b b

[ ]
24 by + by 241

0 2bpar: 2beiiars 0

0——0~—0—0——0——0
Xi,k X

Zh+1

Fic. 7.2. 0-Vertex spline V{;®
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Gr+1 J
Gk Ger1a 0

0 0 0 0 0

N |
6 —0—0—0—0—190
ik kil

Fig. 7.5. 0-Vertex spline ¥V

N, e
€ri1

N,

0 €Tkl Et1T2

0 0 0 0 0

N |
0—0—0—0—0—90
xi,k Xi,ln*nl

Fic. 7.6. 0-Vertex spline

X
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0
ﬂ/ \ 0
e 0
0 ] T~ 0
o 0 T X
S 0 T~
0 0 X 0 /
2 0/ 0 ! f; 0
’ 0
~N ] 0 0 0 0 /
g
- 0 r e
0 0
) 0"
\ 0/
xi,2
Fig. 7.7. 1-Vertex spline ¥V,
(4.0,4.0)
a
{0.9,2.4)
{2.5,2.5)
{4.0,1.0)

Fic. 7.8a. The support of vertex splines shown in Figs. 7.10-7.15

(0.9,4.1) (4.0,4.0)

(4.1,1.0}

{1.1,1.0)
F1g. 7.8b. The support of vertex splines shown in Figs. 7.16-7.21
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Suppose that D is a simplicial prtitioned region. Let x’=(x}, x}) be a
vertex of the partition of D which may be an interior or boundary vertex
and (x/, x** x***1% k=1, .., /=[(x’), be the 2-simplices in D which have
x' as the common vertex, where x>’ 1 =x*! if x’ is an interior vertex. For
each x’, we construct the O-vertex splines ¥}, |y|<2, supported on
UL _, <x', x"* x***+1% For each I-simplex {(x*!, x*?), let (x"!, x*?, x"?)
and (x'*, x*?, x**) be the two 2-simplices whose intersection is {(x", x"?

(0.9,3.1)

(1.0,1.2)

(3.5,0.9)

FiG. 79a. The support of vertex splines shown in Figs. 7.22-7.27

(3.0,4.0)

{1.0,3.5)

(0.7,2.1)

(3.5,1.0)

(1.6.0.9)

FiG. 7.9b. The support of vertex splines shown in Figs. 7.28-7.33
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Fic. 7.10. 0-Vertex spline V&9
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VERTEX SPLINE V{0,1)

CHUI AND LAI
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Fic. 7.30. 0-Vertex spline V{9
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We construct the 1-vertex spline V7, supported on the union of these two
2-simplices. The Bézier nets of these vertex splines are displayed in
Figs. 7.1-7.7. Set

o 5(Xi’k, Xi’k+1, Xi,kfl)
k1 5(Xi,k+ 1’ Xi’ xi,k— 1) + 5(xi,k, Xi,k+ 1, xi,k41)’
5(Xi’k+l, Xi’k+2, Xi,k)

dpr = - Pa— - - -
k2 6(Xz,k+2, Xl, Xz,k) + 5(Xz,k+ 1’ Xl’k+2, xz,k)a

1 . ) 1 .
bk=§(xlfk—x'1), Ck=§(x3k“xlz),
1o e v
dk—_—%(xl’ =x1)5
1 ik iy2
€k—§6(xz’ —x3)%
L e iniket i
szzé(xf —x)(x7 —x1),

| SR o )
g =15 (< = x}) (x5 — xp)

8= 5 L6 — )k — xh) o+ (4 — ) — )]
= 3 (44— )54~ x),
and
L=06(x"',x"%, x?)  [=06(x"!, x2, x*%),
(1.0,2.5) (2.5,2.5)

(3.0,0.9) (4.0,0.9)

Fig. 7.34. The support of the 1-vertex spline shown in Fig. 7.35
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where, as usual, we write x' = (x}, x%), x** = (x%*, x5*) and denote by
1 1
1 xi x;
1 2 3 1 2 2
o(xh, x%,x)=5|1 xi x5
3 3
1 xi x3

the signed area of the 2-simplex {x', x% x°).
We conclude with graphs of vertex splines on various supports
(Figs. 7.8-7.35).
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