
JOl:R:"AL OF APPROXIMATIOK THEORY 60, 245-343 (1990)

Multivariate Vertex Splines
and Finite Elements*

CHARLES K. CHUI A~D MING-JL"N LAI

Department of Mathematies, Texas A & M University.
College Station, Texas 77843, U.S.A.

Communicated by Oved Shisha

Received May 24, 1988; revised August 22, 1988

The objective of this paper is to present a unified study of multivariate super
vertex splines with emphasis on the construction procedure and an application to
least-squares approximation with interpolatory constraints. Both simplicial and
parallelepiped partitions arc studied in some detail, and in the bivariate setting,
even a partition consisting of both triangles and parallelograms is considered.
When the polynomial degree is allowed to be sufficiently large as compared to the
order of smoothness, it is clear that vertex splines can be constructed by working
on each simplex or parallelepiped separately as long as certain snitable normal
derivative constraints are imposed on the boundary faces. Our constructive proce­
dure will take a different route. Instead of normal derivatives, we impose extra
interpolatory conditions at the "vertices." This gives rise to the notion of "super
splines" introduced in this paper. It should also be emphasized that the view point
of considering a basis of piecewise polynomials with smallest possible supports so
that the full approximation order is preserved makes vertex splines different from
the standard approach in finite elements. After all, if the polynomial degree is
required to be lower, it is necessary to work on at least three adjacent simplices or
parallelepipeds simultaneously in constructing a basis of vertex splines. :c) 1990
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1. I:-ITRODUCTIO:-l

It is well known that (polynomial) spline functions in one variable
provide an extremely useful tool in any theoretical or applied research and
computational endeavor that requires any form of approximation of only
partially or even implicitly known functions of one variable. Extensive
studies on both the theory and its applications are ~vaialable in the vast
spline literature (cf. [25,4, 27J). Recently, there has also been considerable
progress in the study of multivariate spline functions (or more precisely,
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piecewise polynomial functions satisfying certain smoothness conditions)
(cf. [9]). In particular, box splines provide a natural and computationally
efficient generalization of univariate B-splines on equally spaced knot. To
generalize univariate B-splines on an arbitrary knot sequence to the multi­
variate setting, so that important problems such as treatment of scattered
data can be handled, a natural approach is to give a basis of compactly
supported piecewise polynomial functions on a given simplicial partition.
This problem, however, is extremely complicated, and a general approach
does not seem to be feasible. For this reason, the notion of bivariate vertex
splines was introduced in [11] in order to give a generalization of the
univariate C1 cubic and C2 quintic Hermite basis to the two-dimensional
setting, one advantage being that vertex splines are easily computable. The
objectives of this paper are to present a unified study of vertex splines in
any number of dimensions, including both simplicial and parallelepiped
partitions (and in the two-dimensional setting, even mixed partitions), and
to discuss an application to least-squares approximation with interpolatory
constraints. For completeness, even some known results (usually in
different versions) will be included and verified in this paper, although
appropriate references will also be provided. Most of the results in this
paper have been announced in [12]. When the degree d of the polynomial
pieces in s-variables is much larger than the order r of smoothness, such as
d?3 2sr + 1 as already suggested by [29, 30, 21], the construction of vertex
splines will be seen to be intimately related to the methods in finite
elements. Hence, the notion of super splines is introduced. These are C'
piecewise polynomial functions with higher order of smoothness across
lower-dimensional manifolds of the grid of partition. It will be seen that at
least for d?3 2sr+ 1, the subspace of super splines already gives the full
order of approximation, namely d + 1. It should be noted and emphasized
that the notion of vertex splines is not confined to the restriction of
d';:; 2sr + 1. Indeed, it is the point of view of considering a basis of smooth
piecewise polynomials with smallest possible supports that separates the
study of vertex splines from the standard procedure in working on each
simplex or parallelepiped individually. For instance, in [13], when
bivariate piecewise polynomials of total degree d on an arbitrary triangula­
tion are considered, the collection of all vertex splines in C' cannot be
obtained by using the standard procedure of the finite element method
when d = 3r + 2 and r?3 2. For this reason, vertex splines will provide an
important vehicle to introduce spline techniques to the methods of finite
elements. However, our study of lower degree vertex splines must be
delayed to a later date (cf. [13] for s = 2). It should also be noted that
vertex splines are constructed only when a grid partition is already given.
Many methods for generating simplicial partitions can be found in the
literature (cf. [28]).
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The outline of this paper is as follows. Bezier and Bernstein representa­
tions of polynomials on simplices and parallelepipeds will first be discussed.
An approach to the use of interpolation conditions at the vertices to deter­
mine a polynomial on a simplex or parallelepiped will be introduced in
Section 3. Section 4 will be devoted to the study of smoothness conditions
of piecewise polynomials. Here, known results in perhaps different
formulations are included for both completeness and convenience. The
main section is Section 5, where vertex splines are defined, construction
procedures are given for the case d~ 2Sr + 1, and that full approximation
order is achieved by super spline subspaces via vertex splines is verified. In
Section 6, least-squares approximation with interpolatory constraints will
be studied. Examples and graphs on various supports are shown in the last
section.

2. POLYNOMIAL REPRESENTATIONS

Let Z,+ denote the set of all multi-integers with non-negative com­
ponents in the Euclidean space RS, where s ~ 1. As usual, for
IX=(CXI, ,IXs)EZ,+, we will use the notations lexl=cx l + ... +cx"
cd = IX I ! cxs ! and x'" =X~l .•. x~' for any x = (Xl' ..., X s ) ER S

• In addition,
for another fJ = (fJ I' ... , fJJ E Z s+' fJ:( ex will mean fJi:( ex i for all i = 1, ..., s.

We will not follow the usual way,

P(x)=
aEZ~

finite numbers of (X ¥ 0

to express a polynomial P(x), but instead we will use the Bezier polynomial
representation on a somplex and the Bernstein polynomial representation
on a parallelepiped. Such representations are independent of the Cartesian
coordinates and hence provide more convenient expressions for our study
of piecewise polynomials. This section is divided into two parts so that we
can study each representation in some detail.

2.1. The Simplex Case

Let xo, ..., X
S

E RS
, s ~ 1. The convex hull

T l = <xo, ..., X
S

) = tt )·iXi : ito Ai = 1, Ai ~ o}
of the set {XO, ..., X S

} is called an s-simplex if its (directed) s-dimensional
volume

° s 1vols<x , ...,X )=-
s1
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is nonzero. Here and throughout, we set Xi = (xi, ..., x~), i = 0, ..., s.
Suppose that <xo, ..., X

S
) is an s-simplex. Then any X= (XI' ..., x s ) in RS can

be identified by an (s+ i)-tuple (Ao, ..., As), where

1< ° I-I 1+1 S)A = k(x) = vo s X , ..., x , x, x , ..., X

1 I vols<xo, ..., X S
)

This (s + 1)-tuple is called the barycentric coordinate of x relative to the
s-simplex T I .

Note that each Ai = Ai(X) is a linear polynomial in x. Hence, for fJ E Z,++ I

with IfJl =n, where nEZ+,

is a polynomial in n~(Td, the space of all polynomials in s-variables of
total degree ~n with respect to T I • In fact, it is easy to see that {ePp(A):
I fJ I = n} is a basis of n~(T d. The polynomial

Pn(x) = L apePp(A)
1131 =n

(2.1.1 )

is called a Bhier polynomial of total degree n relative to the s-simplex T j •

In addition, the set

{( ~ fJi i n)'lfJl- }i:-O -;; x , a13' - n , (2.1.2)

and for brevity {a p}, is called the Bhier net of the polynomial Pn • Hence,
to describe the polynomial Pn' we simply write down its Bezier net on the
simplicial array. For example, in Figure 2.1.1, we show the Bezier net of a
polynomial in n~(Tj) on a triangular array.

Let us first consider the properties of differentiation and integration of
Bezier polynomials. If f is a differentiable function, and A and B are two

XO

Q400

/~
Q310 Q301

/ ~
0.220 a211 a202

/ ~
a130 a121 a1l2 al03

/ ~
a040---Q 031 --Q022 -_a013 -_a004

Xl x 2

FIG. 2.1.1. The B6zier net of P4 in R2
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distinct points in Rs, the derivative of f along the directed line segment
from A to B at x is denoted by

(DB-Af)(X)= :Zf(x+t(B-A))lt~()

. . (a a \
=(B-A)· -~ f(x), ...,-~ f(x) I.

OXI ox, )

Hence, if y = (Yl' ..., y.,) = B - A, we have

If y = Xi - xi, where Xi =1= xi, however, we will also use the notation

To discuss differences, we will use the notation

where the (i + 1)st component of the index IX = (IX o, ..., IX,) is advanced by 1,
and we introduce the difference operator

We have

LEMMA 2.1.1. For i =1= j,

(DijP,J(x) = n L
Ixl ~n

Aija~1>: 1(,1).
1

(2.1.3)

Proof To prove this lemma, we recall that if Xi = (Xi!, ..•, x~) and
x = (Xl' ..., x s ), then

so that

S

X/= L AtX~,
t ~,o

1= 1, ..., S,
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Hence, (2.1.3) follows from a simple change of indices in

~ n! n( a a ) (A ao Aa,)
~ rJ. ! ... rJ. ! aa ak - ak 0' .. s .

rxo+···+cxs=n 0 S l)

For integration of a polynomial on an s-simplex, we have the following
result.

LEMMA 2.1.2. For anypEZ s++
1 with IPI =n,

f n Ivols(xo, ...,xS)1
<xo, ...,x'> tP,B(Ao(x), ...,A,(x))dx= (n;s) . (2.1.4)

Proof Equation (2.1.4) follows immediately from a change of variables
and an integral formula of the multi-r function.

Consequently, we have

COROLLARY 2.1.1. Let

PJx) = L bptP'p(Ao(x), ..., A,(x)).
1,BI=n

,BEZ,/l

Then

(2.1.5)

Also, observing that

(pH)
¢Jrp(Ao, ..., As) tP':(Ao, ..., As) =~ ¢J73::(Ao, ..., As),

we have the following formula for the inner product of two polynomials
over an s-simplex.

COROLLARY 2.1.2. Let

Pn(x) = L bp¢Jrp(Ao(x), ..., A,(x))
I,BI ~n

,Be Z,++l

and

Qm(X) = L ca¢J;:'(AO(X), ..., A,(x)).
1,BI~m

,BeZ,/l
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Then

f P ( ) Q ( ) d = Ivols<xo, ..., X
S

) I "b (13 + (1.)
n X m X X (m+n+s)(m+n) L. [3c~ 13 .

<xo, ...,x'> s n IfJl=n
lal=m

251

(2.1.6)

We refer to [5J and [16J for some other properties of Bezierpolyno­
mials. To evaluate a polynomial in Bezier representation, we may apply the
de Casteljau algorithm (see, e.g., [7,2, 15, 3, 14]). However, to graphically
display a Bezier polynomial surface Pn , we may use the Bezier nets on sub­
divisions of T l instead of the exact values of Pn on T l . Efficient algorithms
are available and will be discussed elsewhere (see, e.g., [9].)

2.2. The Parallelepiped Case

Let {xl, ... , x2
'} be a set of 2s distinct points in Rs so chosen that its

convex huH T2 = <xl, ..., x2
') is a parallelepiped with s-dimensional volume

vols<xl, ..., x 2
') "'" 0, and call T2 an s-parallelepiped. In this subsection, we

consider only non-negative scalar-valued s-dimensional volumes. Clearly,
the (s - 1)-dimensional boundary of the s-parallelepiped T2 consist of 2s
(s -I)-parallelepipeds, A 1> ... , A 2S' say. Suppose that they are so ordered
that A 2k -dA2k (i.e., A 2k - l is parallel to A 2d, k=I, ...,s. For
XE <Xl, ..., x 2

'), we let vols<A b x) be the s-dimensional volume of the
convex hull of {x, Ad, k = 1, ..., 2s. Then we have

vol s <A 2k _ 1 , x) vol/A2b x) 1
1 2' + I 1 2' = -,vols<x , ... , x > vo s<x , ..., x > s

k = 1, ..., s. Set
vol s <A 2k _ l , x)

vk = vk(x) = s I < 1 2' >'vo s x, ..., x
k= 1, "'S s.

Then the barycentric coordinate of x relative to T 2 = <xl, "'S x2
') is

(VI> ... , vs ). Thus, we may consider polynomials Pa(x) of coordinate degree
a= (ai' ... , aJEZs+ in the form of

where

with

Y=(Yl, ..·,YJ·

Pa(x) = I &~$~(v),
y~rx

(2.2.1 )

(2.2.2 )
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If rx = (n, ..., n), n E Z +' we will simply write

p -pn- (n, ...,n)'
'In = 'I(n, ...,n)
f/J y f/J y , a-n= a-(n, "', n)

y y •

Also, let n~(T2) denote the space of all such polynomials P" and nn(T2)=
n(n, "', n)( T2)· For convenience, let us also assume that Xl E nk A2k - 1 and
x i + IE A 2i , i = 1, ..., s, such that vj(x i + I) = (jij' i, j = 1, ..., s. Then the poly­
nomial P,,(x) in (2.2.1) is called a Bernstein polynomial of coordinate degree
rx relative to the parallelepiped T 2 = (xl, ..., x2

'), and the set

(2.2.3)

or for brevity {a~}, is called the Bezier net of P" relative to this
parallelepiped T2. In Fig. 2.2.1, we represent a polynomial in it~(T2) in
terms of its Bezier net on a parallelogram array.

We now introduce some properties on differentiation and integration
of the Bernstein polynomials P". We have two lemmas which follow
immediately from the corresponding univariate results. The notation

will be used. In addition, we will set LJay= ay+.; - ay where
ei = (0, ..., 0, 1,0, ...,0) is the standard unit vector in RS with 1 in the ith
component.

LEMMA 2.2.1. Let P" be given as in (2.2.1). Then

DiP,,(x) = rx i L LJiay;p~-e;(VI(X), ..., vs(x)).
y::S;;ct- ei

FIG. 2.2.1. The Bezier net of F4 in R2

(2.2.4)
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LEMMA 2.2.2. For each r :::;; ct,

253

(2.2.5)

Hence, for J\,(x) = L:h~ ay~~(vl(X), ..., vs(x)) on a parallelepiped
<x\ ..., x2

'), we have

COROLLARY 2.2.1.

(2.2.6)

Observing that

we also have

COROLLARY 2.2.2. For any two polynomials

and

Qp(x) = L Co~~(Vl(X), ..., vAx»
j,,;;p

(2.2.7)

To evaluate the value of j5~(x) at some x E <x\ ..., x2
'), we may use de

Casteljau's algorithm a number of times (cf. [3]).

3. POLYNOMIAL INTERPOLATION

In this section, we will develop a theory of multivariate interpolation by
B6zier and Bernstein polynomials. The results in this section will be used
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to facilitate our procedure in constructing multivariate vertex splines. The
interpolation will be taken at vertices of a simplex or a parallelepiped, and
we will express the interpolation polynomials in terms of the Bezier nets.
Since we will use polynomials of both total degree and coordinate degree,
we have to treat them separately and employ different notations. For
polynomials of total degree, we consider interpolation at vertices of
an s-simplex, and for polynomials of coordinate degree, we consider
interpolation at vertices on an s-parallelcpiped.

Throughout this section, we will use the following definition: a subset
MS E Zs+ is called a lower set if 'Y E l\-P whenever {3 E M S and °~ 'Y ~ (3. The
following theorem gives an inversion formula which will be frequently used
in this and the next section.

THEOREM 3.1. Let M S be a lower set in Zs+ and suppose that

f(rx) = o",~,,;o: G) (_1)\1; g(y), rx EMS.

Then

g(rx)= L (~)(-l)lllf('Y)'
0";1'" 0: I

rx EMS.

3.1. The Simplex Case

In this subsection, we will always assume that T 1 = (XO, ... , XS
) is an

s-simplex. We need the following additional notation: for {3 E Z'~, let

Dg:= Df6···D~o,

and

D13·= D131 ... D13i D13i c l ••• DfJ,
1 • Oi i-l,i i+ 1, i sf

(
O~ )Ih (O~ )13'II .D= - ... -

eXI exs '

i= 1, ..., s,

Also, for IX E ZSt+ 1, let Ci be a map from ZS~l to ZS;- defined by

where z'E{O, ...,s}.
We are ready to state and prove the following theorem.

THEOREM 3.1.1. In Btzier representation with respect to <xo, ..., XS
), the

Taylor polynomial ofa sufficiently smoothfunctionfat the vertex XO is given
by

" ,,(cotJ.)(n-I.BI)! Ii 0Pn(f,x)= L.. L.. t~ , Dof(x )<p:U·o(X), ...,A..(X)). (3.1.1)
10:1 =11 13,,;coo: n.

::(c;ZS...-+1 I3EZs....
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Pn(f, x) = L a:~:(},o(x), "', )'s(x))
1"'1 ~n
'XEZ~+l

255

be the Taylor polynomial of function f at xo. Then for each f3 E Zs+ with
IPI :::;n,

By Lemma 2.1.1, we see that

( 1)1.81 P (f, 0) - n! (1)1.81 L1.81 L1.8s
- n ,x -(n-IPI)! - 10'" sOa(n-If3I.0 0)

= (n _nip I)1 Y~f3 (~) (_1)IYI a(n-!il, /1, , YI)'

Hence, applying the inversion formula in Theorem 3.1, we obtain

a = '\' (P)(_1)li!(n- 1Y1 )!(_1)IYIDYP (fxO)
(n-If3I,f3l, .... f3s) L. f ° n

y~(! y n:

= L (~) (n -1/ I)1 Dbf(xo),
y~(J y n,

completing the proof of the theorem.

In general, we also have the folowing formulation of the interpolation
polynomial at each vertex of the simplex.

THEOREM 3.1.2, Suppose that all partial derivatives up to order k i of a
function f at Xi exist, Let

Pn,dx );= L L CiiX) (n-nI1f3l )1
l"l=k, (3~CI" 13

CXEZ
s++ 1 PEZ~

for i = 0, .." s. Then the polynomial
s

Pn(j,x)= L Pn,k,(X)
i=O

(3.1.2)

in n~( Td satisfies the interpolation conditions

(J i .8 ( i)DiPn(j,x)=Dif x , (3.1.3)

for i =0, ''', sand 13 E Zs+ ' provided n;:;' max {k i + kj , i =F j} + L
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Proof It is obvious that we need only verify that Pn,ki satisfies that

P i Pf iD i Pn,klx )=D i (x),

and

(1)

(2)

Clearly, (1) can be verified by the inversion formula in Theorem 3.1 along
the lines of the proof of Theorem 3.1.1. To prove (2), we note that for
n>k;+kj and JPI ~kj'

for IX E zs++ 1 with IIX I~ k i • That is, (2) holds and we have established the
theorem.

In the fonowing, let N ij E Z + and M~ = {P E Zs+ : Pj ~ N ij'} = 1, , s},
i=O, ...,s. Set n=(s+1)N+1 where N=max{Nij:i=O, ...,s,}=l, ,s}.
Then we have

THEOREM 3.1.3. Suppose that f is a sufficiently smooth function. Then the
polynomial

Pn(f,x)=I L, L ('I) (n-nl!PI)!
,=0 YEM i {3<;;y P
x D1 f(x'"} tP(Yi, ... , Yi, n-Iy \, Yi+ I, "" y,)(Ao(X), ..., As(X)) (3.1.4)

satisfies the interpolation condition

PE M~, i =0, ..., s. (3.1.5)

Proof Let

Pn,lx) = L L ('I) (n -I,P I)!
YEM; p<;;y P n.

x D~ f(x
i

) tP(Yl' "" Yi, n -Iy I, Yi+l, ''', y)Ao(X), ..., As(X)).

Then we must prove that Pn,i satisfies

PEM~ (3)

and

PEMj,j= 1, ..., s. (4)

Once (3) and (4) are established, the theorem then follows.
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Since fJ E Mj and Iy I~ sN < (s + 1) N + 1- fJ h YE M~, we have

Df ,p(YI, ,", Yi, n-I yl, Yi+ I, "', y,/J'1 (xi), ..., As(XJ
)) = 0

for all YEM} andj=l, ...,s. Hence,Pn,i(X) satisfies (4). To verify (3), we
may again apply the inversion formula as in the proof of Theorem 3.1.1.

Remark. [21] obtained a particular case of Theorem 3.1.2 and
Theorem 3.1.3 generalizes a result in [17J which was used to construct
blending interpolation. In general, our interpolation polynomials are not
uniquely determined by the interpolation conditions (3.1.3) and (3.ts), but
in Theorems 3.1.2 and 3.1.3, we have explicit formulas of interpolation
polynomials in terms of Bezier representations. Of course, for s = 1,
Theorem 3.1.2 and Theorem 3.1.3 give the same (unique) interpolation
polynomial determined by (3.1.3).

EXAMPLE 3.1.1. Let s = 1. The polynomial Pn(f, x) satisfying

i=O, ..., k 1

and
D'Pn(f,l)=Di(l),

where D i = di/dx i with n = k 1 + k 2 + 1, can be written in the Bernstein
representation

In the following theorems, we will specify certain interpolation condi­
tions on the vertices of an s-simplex to ensure unique polynomial inter­
polation. To do so, we need some additional notation.

Let r~ := {fJ E Z s+ : IfJ I~ n} and A ~ + 1 : = {o: E Z s++ 1 : IIX I=n}. A collec­
tion of subsets M~, ..., M~ of r~ is said to form a partition of A~+ 1 if the
subsets satisfy:

(1) A7M~nAjMj=0 for i=/=j, and

(2) Ui=o A7Mi = A~+ 1,

where A7 maps Zs+ to Z~+l and is defined by

We have the following result.
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THEOREM 3.1.4. Suppose that M~, ..., M~ are lower sets that form a parti­
tion of A ~+ 1. Then for any given data {J;f3: fJ E M~, i = 0, ..., s }, there exists
a unique polynomial Pn of total degree n satisfying

Moreover, Pn(x) may be formulated as

fJEM~, i=O, ...,s. (3.1.6)

Pn(X) =.t I. s { I. (~) (n -n\r I)! fiY} q)~7f3(Ao(X), ..., As(X)). (3.1.7)
1=0 f3EM j y~j3

Proof Let Pn(x) = L'",' =n a",q)~(}"o(x), ..., AAx)) be a polynomial of total
degree n. By Lemma 2.1.1 and the inversion formula in Theorem 3.1 as in
the proof of Theorem 3.1.1, we obtain

Since each M~ is a lower set, aA7f3' is uniquely determined by the data
{,ly:YEM:} for all fJEM:. In other words, the coefficients a""r:tEA7M:,
i = 0, , s, are uniquely determined by {j;y: '/ E M~, i = 0, ..., s }. Since
M~, , M~ form a partition of A~+ 1, the given data set {fiy: rE M~,

i = 0, , s} in (3.16) uniquely determines the interpolation polynomial.

Actually, the requirement on the sets M~, i = 0, ..., s, can be slightly
relaxed. We have

THEOREM 3.1.5. Suppose that M~ E r~, i = 0, ..., s,form a partition ofr~.
Furthermore, suppose that

1c M~ is a lower set, and

2° The union of Mj and some subset of cj(UL~ A7 M~) is a lower set
for j = 1, ..., s. Then for any given data {fif3: (J E M~, i = 0, ..., s}, there exists
a unique polynomial Pn of total degree n that satisfies

f3 .
Di Pn(x' ) = If! fJ E M~, i = 0, ..., s.

This theorem may be proven similarly to Theorem 3.1.4 by noting that
the previous information can be used in determining the remaining Bezier
net of pAx).

EXAMPLE 3.1.2. Let s = 2 and n = 5. We choose lower sets M6 = {(O, 0),
(1,0), (0,1), (2,0), (1,1), (0,2)}, Mi = M6, and M~ = {(O, 0), (1,0),
(2,0), (0,1), (0,2), (1,1), (1,2), (2,1), (2, 2)}. Then we can find a unique
polynomial Ps satifying

D~ Ps(x i)=fif3' (JEMt, i=O, 1,2,
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FIGURE 3.1.1

for any given data set {li/3: [3EM;, i=O, 1, 2}. In Figure 3.1.1, we group
the Bezier net according to the corresponding M;, i = 0, 1, 2.

EXAMPLE 3.1.3. Let s = 2 and n = 6. We choose the sets M~ = {(0, ay,
(1,0), (0,1), (2,0), (1,1), (0,2), (2,1), (3,0), (3, I)}, Mt= {CO, 0), (L 0),
(0,1), (2,O), (1,1), (0,2), (1,2), (0,3), (1,3)}, and M~={(O,O), (1,0),
(0,1), (2,0), (1, 1), (0,2), (1,2), (0,3), (1,3), (2, 2)}. By Theorem 3.1.5, we
may determine the interpolation polynomial P6 that satisfies the conditions

Df P6(X')=!i/3' fJeM;, i=O, 1, 2,

for any given data {li/3: {3 E M7, i = 0, 1,2}. In Figure 3.1.2, we group the
Bezier net according to the corresponding M;, i = 0, 1,2.

1\
I V O

t ,
I '

t '
I !IIi

f \

L "- -,
,I- - - -;/ '-! ! '\

I '''' '\1 ",,,
I -, I· -/ \

I ,I','I I ,
, I' I \, • ( <. • '.I • \

J \ , \
I \ \ \

I \

:... _ v~ _ .Jl!.J2 :.. ' 11,.'1; v:'~
FIGURE 3.1.2

640160/3-2



260 CHUI AND LAI

We next give an application of Theorem 3.1.1. Suppose that we have two
. l' S <° 1 S) d S- <° 1 S) h .s-slmp lees = x, x , ..., x an = x, y , ..., y s anng a common

vertex XO and a polynomial Pn(x) = LIO:I =n ao:¢~O-o(x), ..., As(x)) with
respect to S. We want to find the Bezier representation of this polynomial

. h S- T d . j °- "s (i 0), - 1Pn WIt respect to . 0 0 so, wnte y -x - £....i=l cji X -x ,j- , ..., s,
where

Let Cj=(Cj1,,,,,Cjs), J=1, ...,s, and 15g=(Dyl_xo)PI ... (Dy'_xo)P, for
f3 E Z s+. Then since

we have

s

(DyLxof)(XO) = I cji(Dxi_xof)(xO),
i=O

J= 1, ..., s,

(3.1.8)

s ( s )Pj
15gf(xO) = }ll i~l CjiDxi_xO f(xO)

= I C~DlJ(xO)
Iy[ = IPI

for some constants C~. Also, since Dg Pn(xO) = n!j(n -I f31)! L1 fb ...
L1~o a(n-/p/,o, .."0)' we may apply Theorem 3.1.1 to obtain

THEOREM 3.1.6. Let S= (xo, ... , X S) and S= <yO, ..., yS) be two simplices
with a common vertex XO = yO. Suppose that Pn = L,o:, =n ao:¢~(Ao, ..., As) is a
polynomial of total degree ~n with respect to S. Then the Bhier representa­
tion of Pn with respect to S is given by

where x = L~~o vi(x) yi with L~=o vi(x) == 1 and the Cj's are defined as in
(3.1.8).

3.2. The Parallelepiped Case

We adopt the following convention and notation in addition to those
introduced in Section 2.2. Let S = <Xl, ... , x 2') be an s-parallelepiped. For
each XES, the barycentric coordinate of x will be denoted by

v = (V1(X), ..., Vs(x)),
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where we assume that Vi (X
1)=O, i= 1, ..., s, and VJX

i + 1)= 1, i= 1, ... , s, as
before.

For each i, 1:::; i:::; 2" let <Xi, XiI), ... , <Xi, Xis) be the S edges of S with
common vertex at Xi so that <Xi, X ii )ll<x\X i + 1

), i=1, ...,s. Hence, we
may designate for each vertex Xi an index r/ = (1J~, ..., fJ~), where

. {I
fJj = -1

if Xi_Xii=X1_Xi+l;

if Xi _X 0= _X 1 +Xj+l.

For /3 = (/31' ..., /3s) EZs+' we denote by lJP the differentiation operator

S

lJP= I (Dxi+l_xdfli,
1'=0

and for any (x, /3 EZs+ and a constant c, we use the notation

and

Also, as before, let

n~(S)={I a/lfP'/J(v), ...,v,):a/lER}
p,;;n

be the space of polynomials on S of coordinate degree n, where
n=(n1 , ...,ns )EZ s+. Write r~={f3EZs+:f3:::;n} and define a one-to-one
map R~ from r~ into itself by

where 1 =(1, ..., I)EZ".-, and let (R~)-1be its inverse.
The following two theorems exhibit the collection of interpolation poly­

nomials satisfying certain interpolation conditions.

THEOREM 3.2.1. Suppose that f has continuous partial dervatives up to
order k i at x\ i = 1, ... , 2s

. Then the polynomial
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satisfies
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I131 ~ k, for i = 1, ..., 2s
, (3.2.1 )

where n = (nl, ..., ns ) with nl ?:: max{k[ + kj,j =1= I} + 1, i = 1, ..., s.

Proof Let

i = 1, ..., Y It is obvious that we only need verify that Pn,kl satisfies

and

(5)

-/3 j _
D Pn,kl(X )-0, 1131 ~kj,j=2, ..., 2s

, (6)

since the other polynomials Pn,ki can be treated similarly. To do this, we
write

arx = L (f3r!.) (0 -,f3)! (111)/3 jjf3f(x1)
/3,,;,rx n.

= L (r!.) (_1)1/31 (_1)1/31 (n-,i3)! (11 1)/3 fj/3 f(x 1).
/3,,;, ex 13 n.

By using the inversion formula in Theorem 3.1, we find

(_1)1/31 (0-,i3)! (1Jl)/3j)f3f(x 1)= L (13) (-l)IYl ay
n. y,,;,/3 )'

= (_1)1/31 L (13) (-l)I/3~YI ay
y";' /3 )'

= (_1)1/31 Afl .. .A~' ao,
or

(0 - f3)! jj/3'j(x1) = LI /31 ... LI /3, a
o! . 1 s o·
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by the application of Lemma 2.2.1. Hence, we have

-p 1 n1 p pD p (X) - A 1 A., a
U,kl - {n _ 13)1 LJ 1 ... LJ s 0

n! (n - f3)! [jfif(x 1),
(n - 13)1 o!

263

That is, (5) is verified. To see that (6) also holds, we note that
ni~max{kj+kl}+ 1, i= 1, ..., s, and

i = 2, ... ,25
,

where we may assume that PU,kl = LIo:I"'kl ao:,p~{vl{X), ... , vs(x)). Since
1]i i= 1]1 = (1, ... , 1), we have aR7fJ = 0 for IR7f3 + YI~ min(n i - f3i) ~ 1 + k 1 so
that

-fJ 1 _ n! ,,(13) IfJ-yl
Dpu, kJx)-{n_13)'1.... (-1) aR7fJ+Y

• Y '" fJ Y

=0.

Therefore, the theorem is established.
Let NijEZ+ and N~= {(f31' ..., f3s)EZ+: f3j~Nij,j= 1, ..., s}, i= 1, ..., 2'.

By using an argument similar to that in the proof of the Theorem 3.2.1 we
have the foHowing result.

THEOREM 3.2.2. Suppose that f is sufficiently smooth at each vertex
Xi, i = 1, ..., 2s. Then the polynomial

~ " ,,(13) (n-y)! . - . 7:Pu(f, x) = L. L. 1.... i (1]') DYj(x') If'R7p{V j {x), ..., vs(x))
i=l {lEN! Y"'fJ Y n.

satisfies

f3EN~, i= 1, ..., 2s, (3.2.2 )

where n = en], ..., ns) E zs+ with ni~ max {Nji + Nki,ji= k}, i= 1, ..., 2S
•

Of course, the polynomials in Theorems 3.2.1 and 3.2.2 may not unique.
We now study the situations when these interpolation problems have
unique solutions. We again need a definition of partition of r~ as follows:

A collection of subsets N~, ..., N~, c r~ is said to form a partition of r~
if

(i) RU NS n RUN S= 0 for i i= j and
I I J }

(ii) u~~ 1 R~ N~ = r~.
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THEOREM 3.2.3. Suppose that N~ c r~, i= 1, ..., 2', are lower sets and
form a partition of r~ Then for any given data {ljf3: f3 E N~, i = 1, ..., 2'},
there exists a unique interpolation polynomial Po E it~(S) that satisfies

f3EN~, i= 1, ..., 2'. (3.2.3 )

Moreover, Po can be formulated as

2' ((iX)(n- y)! iy )Po= L L L n! (11) fiy ~R7rt(Vl(X), ..., v,(x)).
j~ 1 rtEN! y";rt Y

(3.2.4 )

Proof From the assumption, the sets {af3:f3ER~Nn, i=1, ...,2', are
mutually disjoint. Since

Df3p (x1)= n! L1f31 ... L1P'ao
o (n-f3)! 1 s

= n! I L (f3)(-1)IP- Y1 ay
(n-f3)'y";f3 Y

=(-1)P n! L (f3)(-1)IYl ay
(n-f3)!y,,;p Y

for f3 E N~ = R~N~, the inversion formula in Theorem 3.1 gives

This quantity is uniquely determined by the given data for f3 E N~, since N~

is a lower set. Similarly, {a y:YE R~ N~}, i ~ 2, is uniquely determined by
{fiY: YE N~}. The existence and uniqueness of the interpolation polynomial
Po that satisfies (3.2.3) follow by choosing ap as above; i.e.,

f3EN~, i= 1, ..., 2s
,

which are the coefficients in (3.2.4). Thus, the theorem is established.

From the proof of this theorem, we see that ap, f3 E R~ N~, are obtained
by using the previous information. Hence, the requirement that N~,

i = 1, ..., 2s
, be lower sets in Theorem 3.2.3 can be slightly relaxed, and

the resulting theorem will become more applicable. That is, we have the
following generalization.
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THEOREM 3.2.4. Suppose that Nt c r~, i = 1, ... , 2', form a partition of r~
and suppose further that

(i) N~ is a lower set, and

(ii) the union of N; and some subset of (R;) 1 (Uf:~ R~N~) is also a
lower set for j = 2, ..., 2s.

Then there exists a unique polynomial Po E ii~(S) that satisfies (3.2.3) for
any given data {liP: fJ EN}', i = 1, ..., 2S

}.

EXAMPLE 3.2.1. Let s = 2 and n = (3. 4). Suppose that Ni = {(O, 0),
(0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (1, 3)}, N~= {(O, 0), (0,1), (1,0),
(l,1)}, N~={(O,O), (1,0)}, and N~={(O,O),(l,O),(O,l), (1,1), (0,2),
(1, 2)} (cf. Fig. 3.2.1 for the relationship between Nt, i = 1, 2, 3, 4, and the
Bezier net). Theorem 3.2.3 implies that for any given data {f,p: fJ E Nt} we
can find a unique polynomial that interpolates the given data.

EXAMPLE 3.2.2. Let s = 2 .and n = (5,5). Suppose that Ni = {(O, 0),
(l,0), (2,0), (3,0), (0,1), (1,1), (2,1), (3,1), (0,2), (1,2), (2,2)},
N~= {(O, 0), (1,0), (0, 1), (1, I)}, N~= {(O, 0), (0, 1), (0,2), (1,0), (1, 1),
(1,2), (2,0), (3, On, and N~= {(O, 0), (1,0), (0,1), (1,1), (2,1), (3,1),
(0,2), (1,2), (2,2), (3,2), (0,3), (1,3), (2,3)} (cf. Figure 3.2.2 for the
relationship between {N~: i = 1, 2, 3,4} and the Bezier net). Theorem 3.2.3
implies that for any given data {fzp: fJ E Nt, i = 1, 2, 3,4}, there is a unique
polynomial interpolating the given data, although N~ is not a lower set.
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4. SMOOTHNESS CONDITIONS

We next turn our attention to discussing the conditions for two polyno­
mials on adjacent geometric configurations to be joined smoothly together.
The geometric configurations under consideration in this section are
s-simplices and s-parallelepipeds. Three cases will be studied: two simplices,
two parallelepipeds, and a triangle and a parallelogram. Other geometric
configurations such as prisms will be studied elsewhere. (See [20].)

4.1. The Simplex Case

Suppose that

and

are two s-simplices in RS and T = (XO, ..., x k >is a k-simplex which is a
common facet of S1 and S2, where 0 ~ k < s. Let F be defined on Si U S2
by

F(x)lsJ=Pn(x)= l: = l: a"ift:(Ao(X), ...,As(X)),
l"l=n 1"1 =n

F(x)ls2 = Pn(x) = l: a"ift:(vo(x), ..., vs(x)),
l"l=n
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Write yJ = 2:::~0 cjiXi,j = k + 1, ..., s. We have
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THEOREM 4.1.1. Suppose that SI and S2 are two s-simplices such that
T= SI n S2 is a k-simplex in R S

• Then FE C(SI U S2) if and only if the
conditions

AYktl ···AY' a
k + 1,0 sO (~o, "', ~k, 0, ...,0)

Proof If r=O, it is clear that FE CO(SI U S2) if and only if (4.1.1) holds
for elo + ... + elk = n since two polynomials agree on T if and only if their
B6zier coefficients on T are equal. Suppose that FE C(SI U 8 2 ), where
r~ 1. Since yJ - Xo = 2:::~°Cji(X i

- xo), it follows that

Observing that

and

we havc the equivalent conditions

forelo+ ... + elk = n - {3j' j = k + 1, ... , s. Similarly, the conditions in (4.1.1)
that follow from equating the mixed derivatives are also obtained easily.

On the other hand, suppose that (4.1.1) holds for 0 ~ {3k+ 1+ ... +
{3s~r, :Xo+ ... +Y.k +{3k+1 + '" +{3s=n, where r~O. It follows that

(
S )fJk t 1 (S )/1' I

= .L: Ck+ l,iDiO ....L: csiD iO Pnl .
c=O c=o ]
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for all 13k + 1 + '" + 13s ~ r. Consequently, we have

Ii (Djo )f3J (D yk+l_ x O)f3k+l ... (D ys_ x o)f3s 1\1
j=O T

k ( s ) 13k (S )f3S I
= n (Djo )f3J L Ck+1,iD;o ···.L csiD iO Pn

]=0 1=0 1=0 T

for 131 + .. , + 13k ~ r - 13k+ 1 - ... - 13s· This implies that FE C'(81U 8 2 ),

and the proof of the theorem is completed.

It should also be noted that the smoothness conditions can be for­
mulated by using the information of F at one vertex. More precisely, we
have the following result.

THEOREM 4.1.2. FE C'(8 1 U 82 ) if and only if

DYl '" DYk (D k+ 1 o)f3k+ I ... (D o)f3s P (XO)10 kO y - x yS - x n

=Dih···D1t(.f Ck+1,iD;o)f3k+l ... (.f Cso D;o)f3
s
Pn(XO)

1=0 .=0

for all Y1 + ... +Yk~ n - (13k + 1 + ... + 13,) and 13k+ 1 + ... + 13 s ~ r.

Proof If FE C'(SI U S2)' then

(D )f3k+l .. (D )f3s P Iyk + 1 _ xO . yS _ x O n T

(4.1.2)

for 13k + 1 + ... + f3s = 1,1 = 0, 00" r, and hence (4.1.2) holds for all
Y1 + ." +Yk~n-(f3k+1 + .. , +f3s) and f3k+1 + ... +f3s~r.

On the other hand, it is clear that (4.1.2) is equivalent to the condition

LJYl ••• LJYk LJf3k+l .,. LJf3s a
10 kO k+1,0 sO ("0,0, ...,0)

for Y1 + ." +Yk ~ n - f3k+ 1 - ... - f3s' f3k+ 1 + ... + f3s ~ r, where (1.0 = n­
(Y1+'" +Yk+f3k+1+'" +f3s)' Since LJ iO , i=l, oo.,S, are differences, it
follows from the inversion formula in Theorem 3.1 that

Llf3k+l ... LJf3s(ik+ 1, 0 sO ("0, ... , "ko 0, "', 0)

(

S )f3k+ 1 (S )f3S= C .,1. .., C ,1 a.2:: k+ 1,1 10 .2:: si;o ("0, ..., "ko 0, "', 0)
1= 1 1=0
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for f3k t-1 + ... f3s ~ r, 0:0 + ... + O:k = n - (f3k-t 1 + ... + f3J. By Theorem 4.1.1,
we have FE C(SI U S2), which completes the proof of the theorem.

In fact, the idea in the above proof can yield a little more. We need the
following notation. Let M n,r, k = {o: E Z,· -' j: ICt I= n, Ctk-i j + ... + Cts ~ r}
and write

Let

s

yi _ x j = L cf(x l - xj),
1=0
I#j

i = k + 1, ..., sand j = 0, ..., k.

and

k s

15J := n Dgi n (Dyi xJ)Pi
i~O i=k+ 1
I¥j

k • s (S )fii
fjfi.= n DP'i n '\' ciJD.) • 1J L., I I; ,

1=0 i=k+1 1=0
I¥j

where j = 0, ..., k.
Then we have the following generalization of Theorem 4.1.2.

THEOREM 4.1.3. Suppose that M~+ I, i = 0, ..., k, are mutually disjoint
subsets of "~I1,r,k and U7~oM:+ j = MI1,r,k' Furthermore, suppose that
cjM} + j is a lower set for j= 0, ..., k. Then FE C(Sj U 52) if and only if

(4.1.3)

The proof is similar to that of Theorem 4.1.2. Recall that the operator cj

was defined in the beginning of the last section.

Remark 1. One consequence of the above theorem is that it is not
necessary to use normal derivatives to ensure FE C(SI U S2)'

Remark 2. Different versions of the smoothness conditions on polyno­
mials over adjacent simplices have been studied and be found in [15, 11,
5, 16, 19]. Here, generalized versions of our earlier work in [11] were
presented. In the following, we will establish the relationship between our
results and those of the others.
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THEOREM 4.1.4. FE C(51 U 52) if and only if

(
S )f3k+ 1 (S )13'= c ·S· ... c ·s· a.I k + I. I I .I SI I (~o, ..., rxb 0, "', 0)

1~0 1~0

I a(rxO''''''''k,O, ...,O)+YkTl+''· +y,
IYjl =f3j

YjEzs +1

j=k+ I, ..., s

Proof Since for '1k+ 1 + .. , + '1s ~ r,

(4.1.4)

the inversion formula in Theorem 3.1 can be applied to yield

a - '"(rxo, ..., rxb f3k+l, ..., 13,) - L.
t1i~f3i

i=k+ 1, ,.., s

( 13k+ I) ... (13s) ,1'lk+l ... ,1'1.,
n n k+ I, 0 sO
'Ik+ 1 'Is

By Theorem 4.1.1, we have

'1;",13;
i=k+l, ...,s

xa(n-!1k+l- "'-13, "'1- "·''''''b'''I, ...,rxk,O, ...,O)
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Therefore, the theorem is established.

We note, in particular, that when k=s-l, we have

= L a("o, ...,,,,_1.0)+/P~(cso, ...,css)
Iyl =1

which can be seen to be the same as the versions in [15] and [19].
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EXAMPLE 4.1.1. Let s=2 and S= <yO, Y!, y3), S= <yO, vI, V 2) be
two 2-simplices with a common vertex yo. Let the polynomials P3 on S
and P3 on Sbe expressed by using their Bezier nets as shown in Fig. 4.1.1.
Write Vi = a;V° + pyl + yy3, !Y.i+ Pi + Yi = 1, i = 1, 2. Define F by s =
P 3 and Fls=P3' Then

(1) FEC(SUS) if and only if a=k;

V'

d,

d2 C2. b2

d3 C

d4 v 2

FIGURE 4.1.1
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and

and
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(2) FEC1(SUS) if and only if a=k,

11 = IX 1a + f31 b1+Y1 bZ'

Iz= IXza + f3 zb1+ Yzb z;

(3) FE CZ(S uS) if and only if, in addition to the above relations,

m 1 = IX 111 + f31 (IX 1b1 + f31 C1 +Y1 Cz ) +Y1(IX 1bz + f31 Cz +Y1 C3),

mz = IXz / 1 + f3z( IX 1b1 + f31 Cl + Y1 Cz ) +Yz( 0: 1bz + f31 Cz + Y1 C3),

The geometric interpretation of the smoothness conditions is interesting.
See Fig. 4.1.2.

EXAMPLE 4.1.2. Let s = 2 and n = 3. Suppose that S = <VO, VI, V z>
and S = <vo, vi, Uz>are two 2-simplices and P3 and P3 are two polyno­
mials of total degree ~ 3 whose Bezier nets are displayed on their domains
Sand S, respectively (cf. Fig. 4.1.3). Write UZ =o:VO+f3V1+yVZ, where
IX + f3 +Y= 1. Then

(1) FEC(SUS) if and only if

i= 1, 2, 3,4;

(2) FE C1(Su S) if and only if (1) is satisfied and

i = 1, 2, 3;

(3) FE CZ(Su S) if and only if (2) is satisfied and

i= 1, 2;

FIGURE 4.1.2
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b

• 7n2

VO

FJGURE 4.1.3

(4) FE C3(Su S) if and only if (3) is satisfied and

OJ = anz+ fJn J + y(a(ab 3 + fJb z+YCz)

+ fJ(abz+ fJb J +ycd + y(acz + fJCI + yd)).
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The geometric interpretation of the C3 smoothness conditions is shown
in Figs. 4.14a, 4.14b, 4.14c.

EXAMPLE 4.1.3. Let s = 2 and n = 3. Write ljz - yO = fJ( yl - VO) +
y(Yz_ yO) and ljz_ yl=a(YO_ yl)+y(YZ_ VI). Then FEC 1(SUS) if
and only if

and

for (aI> az) E {(O, 0), (1,0), (0, 1), (1, I)} and (fJI> fJz)E {CO, 0), (1,0),
(0, I)}, which are both lower sets. Of course, there are many other choices
of such sets of (ab !Xz) and (fJ1> fJ2)'

4.2. The Parallelepiped Case

Suppose that

S= <wI, ..., w2
')
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FIGURE 4.1.4a

FIGURE 4.1.4b

FIGt:RE 4.1.4c
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S~ (I 2k 2k + I 2'= W, ..., W , U , ... , U >

275

are two s-parallelepipeds in RS with a common facet T= (WI, ... , W
2k >

which is a k-parallelepiped, where O~k<s. Let (vI(x)"",v,(x),,,,,vs(x))
and (,ul(X), ..., ,us(x)) be the barycentric coordinates of x with respect to S
and S, respectively. Without loss of generality, by some rearrangement if
necessary, we assume that

and

( )k+j) 1 ( 2
k +))Vk+j W == =,uk+j U , j=l, ... ,s-k.

(See Fig. 4.2.1 for reference).
For any polynomial p(5 == L"''';;(5 a~;;;~, we define a degree raising operator

R j , 1 ~j~s, by

and

where (J == (nil ..., ns ) and a == (ai' ... , a,) E Zs+. Clearly,

R .a(51(5+e j

J a VI:I.. .
a ~(J+eJ

U
8
.-__------W-

4
.__.._

u
6
f--+------...:..:.....f-..-

w 5

FIGURE 4.2.1

640/60/3-3
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Suppose that F is a piecewise polynomial function defined on SuS by
Fls=Pn and Fls=Pn, where

Pn(x) = L a~~:(vl(X), ..., vs(x)),

Pn(X) = L a~~:(v1(X), ..., .u,(x)),
fJ<;;n

and 0 = (n, ..., n) E Z s+. Let

Di=Di = Dwirl_ wI,

and

j= 1, ..., k,

j=k+ 1, ..., s.

Choose ci = (Gil' ... , CiS)' j = k + 1, ..., S, such that
k S

U2k +i -k _ WI = L Gji(w i+ 1 - WI) + L Gi;(W2k+i-k - WI).

i~l i=k+1

We are now ready to state and establish the following theorems.

THEOREM 4.2.1. Let r = 0, 1, ... . Then FE Cr(S U S) if and only if

jfhrl ... jfJ'a = " b (o-f3)! j~I· .. j'R~I·.·R~ka'*) (421)
k+ 1 s y ~ ~ (0 _ a)! 1 S 1 k y .•

I~I ," IfJl

for f3=fJki-1ekl-1+ ... +f3s es with IfJl::::;r and y::::;ne 1+ ... +ne\ where
a~ = ay, <1(0() = (n - 0(1' ... , n - ak> n, ..., n), and

Proof First, note that

Ia 1= 1fJl·

s

D i = L GjiD i ,
i=l

and

j=k+ 1, ..., S

I b~D~,
I~I = /lk+l-t ... -t /l,
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where Da= (D 1 , ,.. , Dst = D~I .. , D~s, Hence, for any Pn E fi~(S),

~ n'Df3k+I, DPs p-( ) - ' "LJPk+l LJPs Q In-P( (X)' ,(x»)k+l" 5 X -( -13)1 1... k+l'" 5 y'f y /11 " ..,/15 ,
o . y,;;;,n-p

where 13 = 13k+ 1 ek + 1 + ... + 13se5
• Consequently,

iJf3k+1 DPsp- (x)1 - o! " LJ kPk',+11... LisPs
k+l'" s n T-(n-f3)! L. -

y = (YI, "', Yko 0, "', 0)
Yi~n, i= 1, ..., k

x ay~~el+ '" +nek(/11(X), ..., /1k(X), 0, ..., 0).

On the other hand, for a = (a b ... , aJ E Z'~,

0 1--'- I LJ~I ... L1~s
(0 - a)! Y '" nel+ ... + nek

R al Rak -cr(a) :Tnel+ .. , + nek
( () () 0 0)Xl'" kay 'f y VI X , ""Vk X, , ... , ,

where we have used the degree raising operator.
Therefore, FE C(S uS) if and only if

f>2k++/ ... D~sPn(x)1 T= L: ... +Ps baDapn(x) IT'

lal ~f3k+l+

Since ~~el++nek(VI(X),,,,,Vk(X),O, ...,O),y~nel+ ... +nek, are linearly
independent, (4.2.1) follows immediately. Thus, the proof is established.

As a consequence of Theorem 4.2.1, we have

THEOREM 4.2.2. Let F, S, S, and T be defined as in Theorem 4.2.1. Then
FE C(Su S) if and only if

(4.2.2 )
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x

Proof If FE Cr(S uS), then

f>~\+/ ... f>~'fin(X)IT=(.± Ck+I,;D;)Pk+I ... (.± Cs,;D;)P'Pn(X) I '
1= I 1=1 T

where f>2k:J'" f>~'Pn(x)j T is a polynomial of coordinate degree
nel + +nek. Hence, (4.2.2) holds for (f3j, ...,lh)~(n, ...,n)EZ: and
f3 k + I + + 13 s ~ r.

On the other hand, suppose that (4.2.2) holds. Then

f>PI ... f>Pk f>Pk+1 .. , f>P,p' '(WI)
I k k+1 s n

0'__·-API ... APkAPk+ I ... AP'a
(o-f3)! I k k+1 s (0, ...,0)

and

Of
~---;--'-----;-.,..,.LI Pk + I ... APk
(0 - ne l _ ... _ nek)! I k

o!" b Aal Aa'Ral Rak aL. a(o_ex),LlI "'Ll s I'" k (0, ...,0)'
Ia I = Pk+ 1+ ... + P, .

Invoking the definition of the difference operator LI fl ... A~ and the inver­
sion formula in Theorem 3.1, we have (4.2.1) for f3k+l+ .. , +f3s~r.
By Theorem 4.2.1, we conclude that FE C(S uS). Thus, this theorem is
established.

Actually, the idea used in proving Theorem 4.2.2 can be applied to prove
its generalized version, which is the following result, where the notation

will be used.

THEOREM 4.2.3. Let F, S, S, and T be defined as in Theorem 4.2.2. Let
N~ c r~, i = 1, ..., 2\ be lower sets such that R~N~, i = 1, ..., 2\ are mutually
disjoint and U~: I R~ N~ = M n, k, r' Then FE C(Su S) if and only if

f>PI ... f>Pk f>Pk+ I ••• f>P'p'n(w i)
I k k+ I s

=Dfl"'D~kCtl Ck+l,iD;Yk+I .. ·Ctl CsiD)P'Pn(Wi) (4.2.3)

for 13 = (f3j, ... , f3s) E N~, i = 1, ..., 2k.
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EXAMPLE 4.2.1. Let s=2, and S= (WI, w2
, w3

, w4
) and S= <WI, w2

,

u3
, u4

) be as shown in Fig. 4.2.2, where the Bezier nets of P3 and P3 are
displayed. Write u3

- WI = CI(w
2

- WI) +C2(W 3
- WI). Then we have

FE C(S uS) if and only if

i=0,1,2,3;

FE CI(Su S) if and only if

i = 0, 1,2, 3,
and

iiji = ajo + c i U/3(ajo - aj_ I,0) + (1 - i/3 )(aj+ 1, 0 - aj.0)

+ c2(aji - ajo ), i = 0, 1,2, 3.

EXAMPLE 4.2.2. Let s = 2 and n = (5, 5). Furthermore, let Sand S be
the same a~ in Example 4.2.1. Define Fls=P(5.5) and FIT=P(5,5)' Then
FE C1(Su S) if and only if

D lh DfJ A (1)
uJ-wI w2_wIP(5,5) W

= (C I D w2_ wI + c2 D w3_ wI)fJj (D ..2_ wI)/31 P(5, 5)(W
1

)

for 0:;:;; f32 :;:;; 1 and 0:;:;; f3I :;:;; 5. Also, if we choose Ni = N~ =
{(11 1, 112): °:;:;; 11 1 :;:;; 2, 0:;:;; f32 :;:;; 1}, then FE CI(S uS) if and only if

DfJ2 DfJ1 pA (Wi)
oj_wI ..2_ w l (5,5)

= (C I D w2_ w2_ wI +C2Dw3 _ wI )/32 D~i_ wI P(5, 5)(W
i
)

for (f3I, f32) E N~, i = 1, 2.

0-03

w3

W
2 w'

a30 aso 0,31 aS2 a33

a31

[,,,a32
0.20 a20 .LiZ1 .aZ2

a21 I
• I,,,1122 alO Q;1O .all ea12•

all •
a.12. aDO aDO a·OI a02 aa3

WI w'
aOI

0.02

FIGURE 4.2.2
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4.3. The Mixed Partition Case (Triangles and Parallelograms)

Let S=<UO,u\u2) be a triangle and S=<v l
, v2, v3

, v4
) a

parallelogram in R2. For x ER2, let ..1(x) = (..1o(x), ..1I(x), ..12(X)), with
..10 + ..1 1 + ..12=1, be the barycentric coordinate of x with respect to S,
v(x) = (vI(x), V2(X)) the barycentric coordinate of x with respect to S. Let
T=S"S. We consider only two cases: (1) T= {w}, a common vertex of
Sand S, and (2) T= <wI, w2), a common edge of Sand S.

Let us first study the case where T= <wI, w2) (cf. Fig. 4.3.1). Rewrite
S= <wI, w2, u2) and S= <wI, w2, v3

, v4
). Assume, without loss of

generality, that

..1I(WI)=O=VI(WI)

..1I(W2) = 1 = VI(W2)

..12(X)=0=V2(X), XET.

Also, write v3
- WI = C I(W2- WI) + C2(U2- WI). Let F be a piecewise

polynomial function defined on SuS by

Fls=Pn(x)= L afJ~p(..1(x))
IfJl =n
fJEZ~

and

Fls=Pn(x)= L a,,~~n,n)(v(x)).
,,~(n,n)

Furthermore, define another degree raising operator R by

We are now ready to state and prove the following result.

FIGURE 4.3.1
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THEOREM 4.3.1. Let S= <wI, w2
, u2

) and :5= <w\ w2
, v3

, v4
). Then

FE C'(Su S) if and only if

L1 ~ aio = (c l L1 10 + C2 L1 20 )k Rkan - i,i, 0

Proof For O~k~r,

j =0, ..., n, k ~ r.

and

Therefore, FE C'(SuS) if and only if, for 0 ~ k ~ r,

which gives the required result if we note that VI (x) = Al (x) for x E T and
JYO)(vl(x), 0) = <Prn-i,i,OP -Al(X), Al(X), 0). This completes the proof of
the theorem.

EXAMPLE 4.3.1. FEC(SUS) if and only if

j=O, ..., n;

FE Cl(Su S) if and only if

and

ajO = an - i,j,O' j=o, ...,n,

ail = an-j,i,O + Cl L1lOU/nan-j,i-l,O + (1- j/n) an-i-l,j,O)

j=o, ... ,n.
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FIGURE 4.3.2

We now study the case where T= S (l S= {WI} (cf. Fig. 4.3.2). Rewrite
S=<wl, u l

, u2 ) and S=<wl, y2, y3, y4), and let Fbe defined as before.
Also, let

and

Then we have

THEOREM 4.3.2. Let S= <wI, u 2, u 3 ) and S= <WI, y2, y3, y4). Then
FE C(Su S) if and only if

for PI + P2:::::; r.

Proof For 0:::::; PI + P2 :::::; r, we have
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Hence,

(CjDul w1+C2Du2 w1)fJI (c3Dul_wl+C4Du2 wr)fJ2 pn(X)IT

n!
(n - fJl - /32)!

283

x (CjIl1O+C2.d20)f31 (c3AlO+C4.d20)/iza,¢~ fi: liz(A(X»llr
fi2

It follows that FE C(S uS) if and only if

D fi2
• ( ) IwI v3 __ wIPn X ']

=(cIDul_wl+C2Du2_ wr)fil (c 3 D u l w1+C4Du2 wl)lhp,Jx)IT

which completes the proof of the theorem.

EXAMPLE 4.3.2. FE C(SuS) if and only if

FE Cj(S uS) if and only if

a -a0,0 - n,O,O'

and

5. VERTEX SPLINES AND SUPER SPLIKE SPACES

In this section, we are going to construct vertex splines on a given sim­
plicial or parallelepiped partitioned region in R" where s ~ 2, and a mixed
partitioned region consisting of triangles and parallelograms in R2 by using
the results obtained in the previous sections. Before going into the details,
let us first describe these regions and give a general definition of vertex
splines and introduce the notion of the related super spline spaces that will
be applied in the next section for L 2 and [2 approximations with inter­
polatory constraints.

A simplex with k + 1 vertices in R' and positive k-dimensional volume is
called a k-simplex, 0 ~ k ~ s, and a point will be called a O-simplex for
consistency. For any s-simplex S= <yO, ... , yS), each k-simplcx <yiO, ... , yik ),
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where 0::;;; io< ... ::;;; ik ::;;; s, is called a k-facet of S if <Vio, •.. , Vik
) <;:; as, the

(s - 1) boundary of S.
A parallelepiped in R' with positive k-simensional volume is called a

k-parallelepiped, 0::;;; k::;;; s. Similarly, a point will also be called a
O-parallelepiped. For an s-parallelepiped S = <wI, ..., w2') C RS, an (s - 1)­
parallelepiped <Wi1

, .•• , Wi2
' -1), where 1::;;; i1 < .,. < i2'-1 ::;;; 2s

, is called an
(s - 1)-facet of S if it is a subset of as. For k = s - 2, ..., 0, inductively, a
k-parallelepiped <wi!, ..., whk ), 1 ::;;;j1 < ... <h::;;; 2s

, is called a k-facet of S
if it is a subset of the boundary of some (k + 1)-facet of S.

DEFINITION 1. A region D c R' which is the union of a finite number of
s-simplices (or s-parallelepipeds, respectively) S 1, ..•, S N is called a simpli­
cial (or parallelepiped, respectively) partitioned region if it satisfies

(i) int(S;) n int(Sj) = 0, i ¥- j; and

(ii) either Si n Sj = 0 or Si n Sj is a k-simplex (or k-paralelepiped,
respectively) which is a common k-facet of Si and Sj for some k,
O::;;;k::;;;s-1.

DEFINITION 2. A mixed partitioned region Dc R 2 is the union of a
finite number of triangles and 2-parallelepipeds (parallelograms) S l' ... , S N

which satisfies

(i ' ) int(S;) n int(Sj)0, i =f. j; and

(iii) either Si n Sj = 0 or Si n Sj is a point which is a common vertex
of Si and Sj or Si n Sj is a common edge of Si and Sj'

In this paper, we will not study vertex splines on a mixed partitioned
region in RS, s > 2, which contains other convex hulls such as prism.

Let Dc R' be a region considered in Definitions 1 or 2 above. For r,
dE Z + with 0::;;; r < d, let

Sd= Sd(D) = {IE C(D):j ISiEn~(S;), i= 1, ..., N}

be the multivariate spline space of degree d and order r of smoothness on
D, where if Si is an s-simplex, n~(S;) is the polynomial space of total degree
d, and if Si is an s-parallelepiped, n~(S;) = ft~(Si) is the polynomial space
of coordinate degree d = (d, ..., d).

DEFINITION 3. Let

Sd= Sd(D) = {fE Sd(D):jE C2
'-J-l

r across eachj-dimensional

manifold of the partition of D, 0 ~j < S }.

Sd will be called the space of super splines.
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Remark 1. For s = 1, S~= S~.
We are now ready to define vertex splines.

285

DEFINITION 4. Let 0 ~ k ~ s. A super spline fE V~ c S~(D) is called a
k-vertex spline if there exists a k-simplex or k-parallelepiped K such that
the support off is the union of all cells (simplices or parallelepipeds) in D
with K as their common k-facet and that f or one of its first or higher order
partial dervatives is nontrivial on K. The union of all V~, k = 0, ..., s is the
collection of all vertex splines in S~(D).

Remark 2. The notion of vertex splines was first introduced in [11],
where only bivariate O-vertex splines were studied. We will see that vertex
splines always exist if we assume d~ 2Sr + 1. In general, a vertex spline with
degree d~ 2Sr may also be constructed on a simplicial region D with some
restriction on the geometry. See [11] for s=2, r= 1, and d=4, and [10]
for s = 2 and arbitrary d and r.

Remark 3. For d~ 2sr + 1, 'an element in S~ restricted to each s-sim­
plex of D can also be considered as a Hermite element with directional
derivatives at the vertices instead of normal derivatives at points inside the
k-facets of simplex 0 < k < s. See [22,24] for references on Hermite elements
in RS. Furthermore, a90pting the notion of vertex splines instead of finite
elements, we may consider finite element analysis from the viewpoint of
approximation theory. We hope that vertex splines will then play an
important role in cross-fertilizing the two important fields of approxima­
tion theory and finite element analysis.

5.1. Simplicial Partitioned Regions

Let us first establish the following theorem on the existence of vertex
splines on any given simplicial partitioned region by outlining the construc­
tion procedure.

THEOREM 5.1.1. Let d~ 2sr + 1, r ~ 0, and let D be a given simplicial
partitioned region. For each k-simplex T k in D, 0 ~ k ~ s, there exists at least
one vertex spline f E V~ c S~ supported on the union of those s-simplices of D
that share T k as the common intersection, with only one exceptional case:
there is no nontrivial 2-vertex spline in S~(D), where Dc R2

.

Proof We start with the simple case where s = 2. For completeness, we
include the construction procedure of O-vertex splines studied in [11].

(i) Construction of V6 c S~, Dc R 2
.

Let VI be a vertex (or O-simplex) of D and Sv= <vI, vl,v, v2,V),
v = 1, ..., I, be all the triangles (or 2-simplices) of D which share VI as the
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common vertex. Without loss of generality, we assume that Sv and Sv + I

share an edge <v!' v2,V) (or I-simplex) as their intersection, where
V2,v=V I,v+1 (and S'+I:= SI if VI is an interior vertex). Let F be a
piecewise polynomial function supported on U~ = I Sv and defined by

F Is,= L a~</J~, v= 1, ...,l.
l"'l~d

To determine FE S~, we specify its Bezier nets a~ as follows:

(a) We require that

and
IPI ~ 2r (5.1.1 )

IPI ~ 2r, (5.1.2)

where {c/3: 1PI ~ 2r} is a parameter set of real numbers which are not all
zeros.

Let NJ = {(0: 1 ,0:2 ,0:3): 0: 1 + 0:2 + 0:3 = d, d - 2r ~ O:j ~ d},j = 1, 2, 3. Then it
is clear that the requirements (5.1.1) and (5.1.2) uniquely determine the
Bezier coefficients a~, for 0: E N? u N~ u N~, v = 1, ..., I, by the application
of Theorem 3.1.2.

(b) For FI s,' we require that

(5.1.3 )

where NI = {(PI' P2): 2r < PI + P2' PI ~ r, P2 ~ d -2r - I}. We also require
that

D/31 D/32 F(v2.V) - 0
lI1,v_ v2,\' ,..1._- vl,v - , (5.1.4)

Hence, by Theorem 3.1.3 the requirements (5.1.4) and (5.1.4) uniquely
determine the corresponding coefficients a~. Now we obtain

from some of the a~ which have already been determined and we determine
the corresponding Bezier nets a~+ I by applying Theorem 4.1.2. Then the
coefficients a~, 0: E Ui~ IN:, where

N:={(0:1'0(2'0(3):CXI+0:2+0:3=d'O~CXi~r}\ UN~,
k=1

are uniquely determined by the requirements (5.1.3) and (5.1.4).

(c) For Fls" we require that

(5.1.5 )
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where N2 = {(/31' /32), /31' /32 ~ r + 1, /31 + /32 :( d - r - 1}. This is equivalent
to determining the a: with a in

3

N2={(al,aZ,a3):al+aZ+a3=d} U (NJuNj).
I

Thus, we note that the requirements (5.1.1)-(5.1.5) have uniquely deter­
mined a polynomial of total degree d on each 2-simplex 5 v , v = 1, ..., I, for
the given data c(J' I/31 ~ 2r, by the use of Theorem 3.1.5. That is, F is com­
pletely determined. Clearly, FE Cr(D) by Theorem 4.1.3 and FE CZr at VI,

vl,v, and v2.v, v= 1, ..., I, so that FE c2
r at all the O-simplices of D since F

is only supported on the union of these simplices. Hence, F is a vertex
spline in v~ c S~ c 5~.

(ii) Construction of vi c s~, Dc RZ
•

Let (VO, VI) be an edge (or I-simplex of D) and 51 = (VO, VI, VZ ) and
5 Z = (V

O
, VI, v3 ) be two triangles (or 2-simplices) sharing (V

O
, Vi) as the

common edge. Suppose that F is a piecewise polynomial supported on
51 u 5z defined by

i= 1, 2.

To determine FE S~, we specify its Bezier nets a~ and a; as follows:

(a) We require that

1/31 ~2r, i=O, 1,2,3. (5.1.6)

By Theorem 3.1.2, we know that the requirement (5.1.6) uniquely deter­
mines a~, aENJ,j= 1, 2, 3, and i= 1, 2.

(b) For FI51' we require that

(5.1.7)

where cIl1,{J2 are constants which are not all equal to zero. We compute

from the corresponding coefficients a~ which have been determined by
(5.1.6) and (5.1.7), and by applying Theorem 4.1.2 we may use these
derivative values to determine the corresponding a;. We also require that

D~LviD~f_v,F(v i
) = 0,

D I3J D{J2 F(v i
) = °",1 __ Vi ",0 _ ,,', ,

(/31' (2)EN!, i= 1, 2, and

(PI' pz)EN!' i= 1, 2.
(5.1.8 )
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Then the coefficients a~, a E NJ, j = 1, 2, 3, i = 1, 2, are uniquely determined
by the requirements in (5.1.7) and (5.1.8) along the line of Theorem 3.1.3.

(c) For F ISf' i = 1, 2, we require that

(5.1.9)

Clearly, we can see that the requirements in (5.1.6)-(5.1.9) uniquely
determine the polynomials F ISI and F IS2 by the application of Theorem

3.1.5 for the given data {cf3J,f!z: ({31' {32)E1~·1}. Hence,Fis completely deter­
mined. Moreover, FE C(D), by Theorem 4.1.3, and FE c2

r at Vi,

i = 0, 1, 2, 3, because of the requirements in (5.1.6). Thus, FE C2r at all the
O-simplices of D. Therefore, F is a vertex spline in vi e S~e S~.

(iii) Construction of v~ e S~, De R2
•

Let d>5 if r=l and d;?:4r+1 if r>1. Let <yO, v!, v2) be a triangle
(or 2-simplex) in D and F a piecewise polynomial function with support
<yO, v!, v2). Write F=LI~I~darJ.r/J:. To determine FES~, we specify arJ. as
follows:

(a) We require that

1111 ~2r, i=O, 1,2. (5.1.10)

(b) We require that

D fh D fll F(vO) = °vi vO v1 _ vO ,

D~~_.ID~L.1F(vO) = 0,

D/31 D/32 F(vO) = °v1 _v2 vO_v2 ,

(c) We require that

D f3J D/32 F( ,0)
.1_.0 .2 .0 l =C/31,/32'

(5.1.11)

(5.1.12)

By Theorem 3.1.5, the polynomial F on <yO, v!, v2) is uniquely deter­
mined by the requirements (5.1.10)-(5.1.12). That FE C2r at Vi, i = 0, 1,2, is
clear from (5.1.10), and FE C(D) from Theorem 4.1.3. Hence, F is in
V2 sAr sr

2 e de d'

The procedure in constructing bivariate vertex splines in V6, Vi, V~ can
easily generalized to the higher-dimensional setting. Let us describe the
general procedure for constructing vertex splines in Vt e S~(D), De RS,
s>2,0,,;;.k,,;;.s:

Fix a k-simplex Tt of a given simplicial partitioned domain D and let
Sl' ... , S, be all those s-simplices of D which share Tt as their common
k-facet. Write Sv = <vv,o, ..., VV,S), v= 1, ..., l. Denote by Tji , i = 1, ..., I

j
the
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j-simplices of U~ = 1 SV> j = 0, ..., S - 1. Let F be a piecewise polynomial
function of total degree d? 2sr+ 1 supported on U~~l Sv' Write

Fls,= L a~¢J~,~,
I~I ~d

v= 1, ..., l.

In order to have FE S~, we specify its B6zier net a~ as follows:

(a) For j=°and each TOi' i= 1, ..., 1o, we require that

P {oD F(ToJ =
cp,

if TOii' T~

if TOi = T~
for 1131 :(2,-1" (5.1.13)

where {cp: 1131 :( 2' -I,} is a parameter set which contains at least one
nonzero element. Let N oj = {CXEz s + 1: Icxl =d, cxo+ ... +CXj _1 +cxj + 1+
.,. +cxs :(2s

-
1r},j=0, ...,s.

(b) For j = 1, ..., s - 1 and each Tji , i = 1, , Ij , we let Sm,
mE {nji,l' ..., nji,!Ui)} be those s-slmplices of Sv, v= 1, , I, which share Tji
as their common j-facet. Since there are (j1~) choices of j + 1 indices
{uo, ... , uJ from the index set {O, ..., s}, we may enumerate the (j1 D
choices by any ordering, and for each u, 1:( U :( ()·1 i), let

N -f zS+l.ll=d + ... + :5'::2s - j
-

1 }j,u- cCXE + . CX ,CXUj + 1 Ct. u,'" r ,

where {Uj + 1, ... , u,} = {O, ..., s}\ {Uo, ..., uj }. Now, for a given s-simplex Sm,
write T;i= <ym,uo, ..., ym,uj ), m=nji,I' with a fixed vertex ym,uo. We require
that

if Tjii' T~

if Tji = T~
(5.1.14)

S

Dg = Il (Dvm,uk _ vm'UO)Pk,
k=1

and {cp: 13 E CuoNji} is a parameter set which contains at least one nonzero
element. For the other simplices Sb kE {nji,2, ..., nji,!Ui)}, we compute
jj!3F(ym,uo) from Fis

m
and then use these interpolating data to determine

the corresponding coefficients of FI Sk by applying Theorem 4.1.2.
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(c) For j=sand each Sv, v= 1, .." I, we require that

if Sv # T~

if Sv= T~
(5.1.15)

for fJ E coNs, where

and {c{J: fJ E coNs} is a set of real numbers containing at least one nonzero
number.

By applying Theorem 3.1.5, we can see that F is uniquely determined on
each Sv,v=l, .." I, since it is easy to verify that {Nt,u:1~u~(~:i),

o~ t ~ s - I} can be arranged as lower sets attached to the vertices
yV,O, , •• , yV,S. Also, that FE §~ is guaranteed by the requirements
(5.1.13)~(5.1.15) and Theorem 4.1.3. This establishes the theorem.

1° For a simplicial partition region Dc RS, r ~ 0 and d~ 2sr + 1, we
construct basic vertex splines which constitute a basis of the super spline
space §~ as follows.

2° For each O-simplex To i' i = 1, ..., 10 , of D and for each y E Zs+ with
IyI~ 2S

-lr, we let ViJ,i E V~ c S~ with support given by the union of those
s-simplices that share TO,i as their common O-facet with parameters
c/3= bY/3' IfJl~2s-1r, where bY/3 is the usual Kronecker delta; that is,
by,/3 = 0 for fJ # y and = 1 for fJ = y.

3° For eachj-simplex Tji , i=l, ...,lj , of D and for each yENjil' let
V}i be an element of Vj c S~ with support given by the union of all those
s-simplices of D that share T.Ji as their commonj-facet, and with parameters
c/3 = bY/3' fJ E Nji , j = 1, , s -1, i = 1, ..., Ij , where Nji = CUo(ji) Nji ·

For each Sv, v = 1, , I of D and yENs' let ~,v E V~ c §~ with Sv as its
support and parameters c/3 = bY/3' fJ ENs·

Let B be the collection of all vertex splines so constructed. Clearly, B is
a linearly independent set of functions in S~. In fact, we have

THEOREM 5.1.2. B is a basis of §~.

Proof We need to prove only that B spans §~. For each f E §~, we
claim that f is a linear combination of elements in B. Indeed, let
fl == f - L;O= 1 LIYI ~2,-lr DYf(yi) Viv Then fl E S~ and satisfies DYfl(yi) = 0,
for Iy I~ 2~-lr, i = 1, ..., 10, Also, let f2 = fl - L;l~ 1 LYE !Vii Dbf(y%,uollil) Vii'
Then f2 E S~ and satisfies DYf2(yi) = 0, for Iy I~ 2s

-
1r, i =1, ..., 10, as well as
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D'bf2(Vnli
,UO(lil) = 0, for y E Nu, i = 1, ..., II' We repeat this procedure until we

have an Is in S~ that differs from f by a linear combination of elements in
B and that satisfies DYjAvi

) = 0, for Iy I~ 25
-1 r, i = 1, .." 10; DYj(yNji,k) = 0,

f N- '-1 1 '-1 l' d DYf( v,uo(J!)) -o!' iVor y E ji' 1- , ... , j' J - , ..., s - , an 0 v - , lor 1V s'

V = 1, ..., I. On the other hand, for each v = 1, ..., I, fix) Is, is a polynomial
of degree d satisfying these zero interpolation conditions. By Theorem 3.1.5,
fs Is, = 0 for v = 1, ..., 1. Hence, fs == 0 and this completes the proof of the
theorem,

Moreover, we have the following result concerning how well the super
spline subspace S~ approximates,

THEOREM 5.1.3. Suppose that IE Cd + leD) with d?; 2sr + 1. Then

inf Ilf-slloo~Chd+l max IIDilflloo
sES~(D) lill~d-1

for some constant C independent of hand f, where h is the maximum of the
diameters of the simplices S" v = 1, ..., I.

Proof Let M: Cd + I(D) --> S~ be defined by

10

Mf(x) = I I DYj(yl) Vb;(X)
i = 1 !y I~ 2s - lr

s I Ij

+ ILL Dbf(vnji.uOliil) V;Jx)
j= 1 i= 1 yeN!1

1

+ L I D6f(v j O) ~/x)
i=l YENs

for any fE cd + I(D). Clearly, M is an interpolation operator and by induc­
tion on the number of s-simplices in D and recalling Theorem 3.1.3, we can
prove that Mp = P for all p E lCd' where lCd is the space of all polynomials
of total degree ~d. Hence, for any fixed x in D,

F(f) =f(x) - Mf(x)

defines a linear functional Fan Cd + I(D) which clearly satisfies the follow­
ing two properties:

(a) IF(f)I~CIL1=ohkllfllb where Ilfllk' where Ilfllk=
maxlfJl~k IIDilfiloo and CI is a constant independent off and d, and

(b) F(p)=OforallpElCd'

By a result along the line of Bramble and Hilbert [6J or the proof of
Theorem 5.2.3 to follow, we have

IF(f)I~Chd+1 flld+l'

640160;3,4
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where C is a constant independent off, d, and x. That is,

If(x)-Mf(x)1 ~Chd+l Ilflld+1>

which establishes the theorem.
Several remarks are in order.

XED,

Remark 5.1.1. For s = 2, a different formulation of Theorem 5.1.3 is
known in the finite element literature (cf. [29, 30, 21]).

Remark 5.1.2. Though S'd = S'd when s = 1, S'd is a proper subspace of
S'd for s ~ 2. For s = 2 and d~ 4r + 1, we can even compare the dimensions
of S'd and S'd. For a simplicial partitioned domain Dc R2

, let

v = number of vertices (O-simplices) of D,

E = number of edges (I-simplices) of D,

T = number of triangles (2-simplices) of D.

We have the following result on the dimension of the space of super splines.

THEOREM 5.1.4. Let r~O and d~4r+ 1. Then

. ~ ( r(r+1))dlmS'd=(r+l)(2r+l)V+ (r+l)(d-4r-l)+ 2 E

(d-3r-2)(d-3r-l)
2 T.

Remark 5.1.3. In a recent paper by Alfeld and Schumaker [1], the
dimension of the spline space S'd(D) whee d~ 4r + 1 was determined to be

dim S'd(D) = (d+ 1)(d+2) + (d-r)(d-r+ 1)
2 2

~+3d-r2-3r
xE1 - 2 V1 +a(r),

where E1 and VI denote, respectively, the number of interior vertices and
the number of interior edges, and

VI d-r

a(r)= L L (r+j+l-jeJ+
i=1 j=1

with ei denoting the number of edges of different slopes meeting at the ith
interior vertex.
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Let VB = V - V/ be the number of boundary vertices. It is clear that
VB ~ 3. Then by using the well-known formulas

it is not difficult to arrive at the following result.

COROLLARY 5.1. Let r~ 0 and d~ 4r + 1. Then

dim S~- dim S~= ~r(r + 1) V/+ r(r + 1)(VB - 3) + o-(r).

Hence, for r > 0, S~ is a proper subspace of S~ unless the partitioned region
D consists of a single triangle.

Proof of Theorem 5.1.4. By Theorem 5.1.3, since

S~ = span{Vb;: i = 1, ..., V, Iy I ::::; 2r}

u {Vi;: i= 1, ..., E, YEN!} u {n;: i= 1, ... , T, YEN2 },

where

and

N 2 = {y E Z ~ : 2r < Y1 + Y2 ::::; d - r - 1, r < Y1 < d - 2r, r < Y2 < d - 2r },

it follows that the cardinality of N! is r(r + 1)/2 + (r + 1)(d - 4r - 1) and
the cardinality of N 2 is (d - 3r - 2)(d - 3r - 1)/2. This completes the proof
of the theorem.

5.2. Parallelepiped Partitioned Region

We first prove the following existence theorem of vertex splines on a
given parallelepiped partitioned region for d~ 2sr + 1 by outlining the
construction procedure.

THEOREM 5.2.1. For each k-parallelepiped Tt of a given parallelepiped
partitioned region D, 0::::; k::::; s, there exists at least one k-vertex spline
f E Vt c S~ supported on the union of all the s-parallelepipeds which share Tt
as the common k-facet.

Proof Let us first consider the bivariate case.

(i) Construction of V~ c s~ for s = 2.

Fix a vertex (or O-parallelepiped) T~ of D. Let TV' v = 1, ..., I, be an those
parallelepipeds in D that have T~ as one of their vertices. Write
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Tv = <T~, wV
, wv'l, wv + I), V = 1, ..., 10' with the assumption that w1o + I = WI

if T~ is an interior vertex. Suppose that F is a piecewise polynomial
function supported on U~o= I Tv and

FI = " a V J:(d,d)
Tv L, (3'1'v,fJ'

{3';; (d,d)

v= 1, ..., 10'

To determine FE S~, we specify its Bezier nets a p on each Tv via the
following steps:

(a) We require that

D{3F(T~)=c{3,

D{3F(w V
) = 0,

DfJF(wv,l) = 0,

IPI ~2r,
IPI ~2r, V= 1, , 10' and

IPI~ 2r, v= 1, , 10'

(5.2.1 )

where {c{3: IPI~ 2r} is a set of real numbers containing at least one
nonzero element. Let N° = {(P I> P2): PI + P2 ~ 2r} u {(d - PI' P2): PI +
P2 ~ 2r} u { (P I' d - P2) : PI + P2 ~ 2r} u {(d - PI' d - P2) : PI + P2 ~ 2r }.

(b) For FI T" we require that

v = 1, ..., I, (5.2.2)

In addition, we require that

D {3 D{32 F( v,l)_O
wv_wv,l wv+1_wv,1 W -,

and

D{3 DfJ2 F( v, 1) - °wv+1_wv,l wv_wv,l W -,

(5.2.3 )

(5.2.4)

By applying Theorem 4.2.2, the other interpolation conditions

(5.2.5)

are determined by the corresponding Bezier nets of FI T,_I' v = 2, ...,1+ 1,
and we may then use (5.2.5) to determine the corresponding ap's. Let

N1= {(PI' P2), (d- PI> P2), (PI, d- P2), (d- PI' d- P2):
2r+ 1~P1 + P2' °~P1 ~r, 0~P2 <d-2r- Pd·
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(c) For FIT" V= 1, ..., I, we require that

295

(5.2.6)

where N 2 = U/31' /32): /3i ~ d, i = 1, 2} \(NO UN 1).

Clearly, by Theorem 3.2.4, we see that FI T, is uniquely determined by the
requirements (5.2.1 )-(5.2.6). Also, by (5.2.1) it follows that Fe c2

r at each
vertex in D and by (5.2.1)-(5.2.5) Fe C(D). Hence, Fe S~ and has support
U~ ~ 1 Tv; i.e., F is a vertex spline in V~.

(ii) Construction of vf c s~ for s = 2.

Fix an edge (or 1-parallelepiped) Tf=<w 1,w2
), and let T1 , T2 be two

parallelograms (or 2-parallelepipeds) sharing Tf as their common 1-facet
Write Tv = <WI, w2

, wv
,3, wV

•
4

), V = 1, 2, and let F be a piecewise polyno­
mial function supported on T1 u T2 with

FI = '\' a V J.(d,d)
T, L. fi'l'v,fi'

fi",(d,d)

v= 1, 2,

To ensure that Fe S~ we specify the coefficients apas follows:

(a) Set

I/31 ~ 2r (5.2.7)

(b) For FI T1' consider the interpolation conditions

(5.2.8)

where {c(fiJ, fi2): (/315 /32) e]\rl} is a set of real numbers containing at least
one nonzero element. In addition, we require that

D
fi1 Dfi2 F( 13) - 0wl_w13 w 14 _w 13 W . - .

D fi1 Dfi2 F( 13) - 0
w14_w13 wl _w13 W -

D fi1 Dfi2 F( 14) - 0
13 14 2 14 W -w -w w -w

n fi1 nfi2 F( 23) - 0
w2_w23 W24 _w23 W .-

n fi1 n fi2 F(W 23 ) = 0w24 _ w23 w2 _ w23

nfi~3 24Dfi~ 24F(W24) = 0w -w w-w

(5.2.9)
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FIGURE 5.2.1

Furthermore, we apply Theorem 4.2.2 to obtain

(5.2.10)

from the corresponding coefficients of FI 1'1 and use (5.2.10) to determine
the corresponding a~'s.

(c) We require that

(5.2.11 )

and

(5.2.12)

Hence, by Theorem 3.2.4, it is clear that F I1', is uniquely determined by
the requirements (5.2.7)-(5.2.12). It is also clear from (5.2.7) that FE C2r at
each vertex, and that FE cr(D) by (5.2.7)-(5.2.10) and Theorem 4.2.2. That
is, FE S~ and has support given by T I U T 2 • In other words, F is a vertex
spline in Vi.

(iii) Construction of v~ c s~ for s = 2.

Consider a parallelogram (or 2-parallelepiped) T~ in D and suppose that
T~= <wI, w2

, w3
, w4

) and Fis a polynomial supported on T~; that is,

{

"a J:(d,d)
L, fJ'f'{I'

F(x)= ~""(d'd)

1,2
XE 2

otherwise.
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To ensure that FE S~, we specify its coefficients afJ as follows:

(a) Set

297

IPI~ 2r, i = 1, 2, 3, 4. (5.2.13)

(b) For (131' P2) E ill, specify

D fJ1 D fJ2 F(w 2
) = 0w4_ ",2 w1_w2

D fJ1 D fJ2 F(w 3)=ow4 _w3 w1 _w3

and

D~1_W4D~LwJ(W4)=0

D fJ ; Df!2 F(w4 ) = O.w--w4 w3 _w4

See Fig. 5.2.2 for the orientation of {wI, w2
, w3, w4

}.

(c) We also require that

(5.2.14)

(5.2.16)

where {C(f!J.f!2): (P 1> P2) E N 2} is a set of real numbers containing at least
one nonzero element.

Clearly, by. Theorem 3.2.4, F is uniquely determined by the conditions
(5.2.13)-(5.2.16). Also, it follows from (5.2.13) that FE C2r at each vertex in
D and FE C(D) by (5.2.13)-(5.2.15). Hence, FE S~; that is, F is a vertex
spline in V~.

The procedure in constructing bivariate vertex splines can be generalized
to the higher-dimensional setting. We describe the generalization procedure
briefly as follows. For a k-parallelepiped Tt in D, let T1, ... , T, be all those
s-parallelepipeds in D that share Tt as their common k-facet. Write

FIGURE 5.2.2
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Tv= <Wv'l, "', wv,e'), with 1'fv.J, the index of wv,j with respect to
Tv, v= 1, ,.., I, Denote by Tji, i = 1, .." Ij , all the j-parallelepipeds of
{Tv: v = 1, .." I},j = 0, .." s - 1. Let F be a piecewise polynomial function
supported on U~~ I Tv, and write

FI = " a V J.,,(d)T, L. fJ'f'v,fJ'
fJ~,,(d)

v= 1, "', I,

where a(d) = (d, .." d) E Zs+' To ensure that FE S~, we specify its Bezier
nets a pas follows:

(a) For j=O and each TOi , i= 1, .." 10 , let Tm, mE {nOi,l, .." nOi,!'(Oi)}
be the s-parallelepipeds in D which have TOi as their common vertex, We
require that

fJ {O,D F(Toi ) =
cfJ,

if TOii'Tf

if TOi =Tf
(5.2.17)

for IPI ~2s-lr, where {cfJ: IPI ~2S-lr} is a set of real numbers containing
at least one nonzero element. Let NO,j = {p1'fj + «1- n j )j2) a(d), 1 PI ~

2S
-

l r}, j = 1, ,.., 2s
, where 1'fj denotes the index of wj with respect to

T= <wI, .." w2s
),

(b) For j=I, ...,s-l, and each Tji,i=I, ,lj , let Tm, mE
{nji,l> .." nji,!'Ui)}, be those s-parallelepipeds Tv, v = 1, , I which share Tji as
their common j-facet. For Tm , there are 2s

-
j C~) j-parallelepiped facets.

We enumerate these 2S-jC~) j-facets by any ordering and denote the uth
j-facet by <WU1

, ... , WU2J ) where wU;=WU;(u), i= 1, ..., 2j . Then the index 1'fu;
of wu

;, i = 1, .." 2j
, has s - j equal components, say,

or -1

for v = 1, .." s - j, where 1~ iv~ s since <W U1
, .. " wUzJ ) is a j-facet of T.

Hence, we may set

{
l-1'ful . }N. = R*nUl+--*a(d):R.+, .. +R.~2S-J-lr

],U p " 2 PI! J-IlS _ j

and

Fix a Tm, mE {nji,I' ..., nji,!Ui)}, and assume that Tji= <Wm,Ul, ..., wm,uzJ) for
some u, 1~ U ~ 2S-jC~), Then we require that

if Tjii'Tf

if Tji= Tf
(5,2.18 )
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(5.2.19)

for f3ENj,u=(R~;d»)-1 Nj,u, where {cfJ:f3E(R~;d))-1 Nj,J is a set of real
numbers which contains at least one nonzero element. For the other Tp's,
p E {nji, I' "" nji,/Ui)} \m, we obtain J)f3FI Tp(wP,ui(p)) from the corresponding
coefficients of FI Tm and we use them to determine the coefficients of FI T

by applying Theorem 4.2.2, where f3 E (R~;f;)) -I Nj,u(p). P

(c) For j=s and each FIT" v= 1, ..., t, we require that

fJfJF(WV,I)={O, if Tv#T~
cfJ if T v = T~

for f3 E N S = {Co( E Zs+' Co(:::; O'(d)}\U;:; U2::PIL~p)Np,u'

By applying Theorem 3.2.4, we see that FIT, is. uniquely determined by
the conditions (5.2.17)-(5.2.19) and that FE C 2'-J-l, across each i-dimen­
sional manifold of the partition is confirmed in view of (5,2.17) and
Theorem 4.2.2. Therefore, FE S~; i.e., F is a vertex spline in V~. Thus, we
have completed the proof of the theorem.

It is now easy to construct the basic vertex splines for a given
parallelepiped partitioned region D provided that r ?:°and d?: 2S r + 1. The
procedure is as follows:

10 For each O-parallelepiped TOi in D, i = 1, ... , la, and for each y with
Iy I:::; 2s

-
l r, let Ubi be in V~ c S~ with parameters cfJ = 0YfJ' If31 :::; 25

-
1r.

2° For each i, i = 1, ..., s - 1, and each i-parallelepiped Tji in D,
i=l, ...,lj' and for YE(R~;f}i»)-INj,UUi)' let U}i be in V;cS~ with

_ - _ cr(d) -1 A

parameter CfJ - (jYfJ' f3 E Nj,u - (R U1Ui )) Nj,uUi)'

3° For each s-parallelepiped Tv in D, v = 1, ..., I, and YENs, let U~v be
in V~ c S~ with parameters cfJ = 0YfJ' f3 ENS.

Let fJ be the collection of all vertex splines U}i and U~v constructed as
above. Clearly, fJ is a linearly independent set in S~. Following the same
argument as in the proof of Theorem 5.1.2, we have

THEOREM 5.2.2. For a given parallelepiped partitioned region D, fJ is a

basis of S~.

To study the approximation order of S~, let us take a detour by
considering the Banach space Ck+m(K) with norm II V Ilk+m =
L Ia I,;;; k + m If Dav II 00' where K c R S is a closed and bounded set with
Lipschitz continuous boundary. Let Ck+ m(K)/nk be a quotient space with
quotient norm Iii . III k + m defined, as usual, by

Illvlllk+m= inf {llv+ Pllk+m}
pE nk
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Denote by Ivlk-;-j=I:lal~k+jIIDavllec for VECktm/nk. We need the
following result, namely which may be used as a substitute for the result of
Bramble and Hilbert [6J in proving Theorem 5.1.3. The following lemma
is required.

LEMMA. There exists a constant C such that

II VIllk+m ~ C(fl IVlku)

Proof Let N= dim(nk) = (k;-s) and {g;: 1~i~N} be a basis of the
dual space of nk' Let us view g;, 1~ i ~ N, as linear functionals on
Ck+m(D) by the Hahn Banach Extension Theorem. Observe that for a
pE nb we have glp) =0, 1~ i~ N, if and only ifp = °since {g;, 1~ i~ N}
is a dual basis of nk' We claim that there exists a constant C such that for
all v E CHm(D),

Indeed, if this were not true, then there would exist a sequence {v I}, VI in
Ck+m(D), such that

(i) II vlllk+m = 1, and

(ii) }~n;, (~l IVllk+j+ i~l I g;(VI)I) =0.

Since II vIII k + 1 ~ I vIII k +m = 1, {V I} is a bounded and equicontinuous family
in Ck(D) and by the Ascoli Theorem contains a subsequence {vd such
that

lim II VI, - Vo Ilk = 0,
v -~ co

where VoECk(D). Since liml~oo Ivllk+l=O by (ii), we see that
{vdECk-;- 1(D) is a Cauchy sequence with lim v ~ co II vI, - Vo II k + 1 = O.
Therefore, II Davo II co = limv --> co II Davd 00 = 0, 10:1 = k + 1. It follows that
VoE nk • Now, by (ii)

g;(vo) = lim glvtJ = 0, 1 ~ i ~ N,
V·) 00

which implies that Vo== O. Again, since limI~ 00 I:7'~ 1 IvII k +j = 0, {vd
is a Cauchy sequence in Ck+m(D) and lim v-->':0 livI,-vollk+m=
limv~oo IlvI,-O:lk+m=O and this contradicts (i).
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For each v E Ck !-m(D), let Pv E nk such that f?;{t: +pJ = 0, 1~ i ~ N. It
follows from the abovc claim that

m

= eL:I V Ik tj'

j~1

This completes the proof of the lemma.

With the aid of this lemma, we can verify

THEOREM 5.2.3. Suppose that fE C'd(D), d~ 2"r + 1, and s> 1. Then

inf II f - s liD ~ Chd+ 1 max Ii D~f Ii 7V'

sed'd d;J <;; l:xl <;;sd

where h is the maximum of the diameters of all parallelepiped~ in D and C
is a constant independent off and h.

Proof Lct us define a map M: C'd(D) --. S~(D) by

10

Mf(x) = L:
i= 1 Iy: ~2s-1r

.1'-1 Ij

+ L: L: L: !JYf(Wmji.UJUi») U;JX)
j 1 i 1 YENj,u(ji)

I

+ L: L: !JY[(Wv,l) U~)X).
\',......, 1 yENS

Clearly, M: C'd(D) --. S~(D) is an interpolation operator and it can be
shown that Mp = P for any pEnd by verifying that Mp interpolates p on
each parallelepiped, using induction and applying Theorem 4.2.3.

For a fixed xED, consider

F(f) =f(x) - Mf(x).

It is clear that F(f) satisfies

(i) F(f)1 ~ C\ L;~o hi If II for some constant C 1 independent of f
and hand

(ii) F(p)=O for allpEnd.
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Let us first assume that h = 1. Clearly,

sd
IF(f)I=IF(f+p)I~CI L If+pll=Clllf+pllsd

1~0

for any pEnd' It follows that

By the above lemma,

(s-I)d
• ~ P

IF(f)I~Cllllflllsd~C2 ~ Ifld+j=C max IID11100.
j=1 d+I<;;IPI<;;sd

Now for any h > 0, we simply let x = hy, g(y) = f(hy), and fJ = {y: hy ED}.
Then the maximum of the diameters of all parallelepipeds of fJ induced
from that of D is 1. Thus,

(s-I)d
I F(f)1 = I F(g)1 ~ C2 L Igld+j

j~1

(s-I)d
~ d+'=C2 ~ h Jlfld+j
j~1

~ Ch d + I max II DPf II 00
d+ 1<;; IPI<;;sd

which completes the proof of the theorem.

5.3. Mixed partitioned regions in R 2

Let D be a mixed partitioned region in R 2
• We first prove the existence

result by outlining the construction procedure.

THEOREM 5.3.1. Let d~ 4r + 1, r ~ 0. For each vertex (or edge) of D,
there exists at least one vertex spline in S~ with support given by the union
of those cells (triangles or parallelograms) which share the given vertex (or
edge). In addition, for r ~ 2 and any given cell (triangle or parallelogram),
there exists at least one vertex spline in S~ whose support is this given cell.
However, there is no nontrivial function V~ in S~(D) whose support is a
single triangle.

Proof (i) Construction of V~ c S~.

Let V be a vertex in the mixed partitioned region D and let SV'
v = 1, ..., I, be the cells (triangles or parallelograms) in D which have V as
one of their vertices. Let T?, i= 1, ..., 10' and T}, i= 1, ..., II, be all the ver-
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if Sv is a triangle

if Sv is a parallelogram.

(5.3.2)

(5.3.1 )

tices and edges of U~ ~ 1 Dv' respectively, and F be a piecewise polynomial
supported on U~ ~ 1 Sv such that

{

I a~¢J:
Fls= lal~d

, I bp<ft~d, d)

f3~(d,d)

To ensure that FE S:, we specify the Bezier nets of FI S,' v = 1, ... , I, as
follows:

(a) For T?, i= 1, ... , la, we require that

f3 ( 0) _ {O if T? =1= V
D F T j - 'f a

Cf3 1 T j = V,

for I131 ~ 2r, where {c f3: I131 ~ 2e} is a parameter set of real numbers which
are not all equal to zero.

(b) For each T;, i= 1, ..., 11, there are four cases to be considered:
(1°) only one cell intersects with T;; (2°) two triangles share T;; (30) two
parallelograms share T;; and (4°) one triangle SVI and one parallelogram
SV2 share T;. For the first three cases, our interpolation conditions ofF are
the same as those in the proofs of Theorems 5.1.1 and 5.2.1. For the final
case, we let T; = <Wi, w2

) and require that Fls'l satisfy

D f31 D f32 F(w 1
) = 0w2 _w l v-wI

for (131,132) E{(131' 132); 0 ~ 132 ~ r, 0 ~ 131 < d- 2r, /31 + /32 > 2r}, where
SVl = <WI, w2

, v). Also, we obtain, by using Theorem 4.3.1,

D~~_wID:f_wIF IS'2(w 1
), (5.3.3)

where (131,132)E{(131,132):O~132~r, 2r~131+132' O~131<d-2r+ }
from the corresponding coefficients of FI s and use (5.3.3) to determine

'I

appropriate coefficients of Fj s .
'2

(c) For each Sv, V= 1, ..., I, there are two cases to be considered:
(10) Sv is a triangle and (2°) D v is a single parallelogram. Our interpolation
conditions on Sv for cases (1°) and (2°), are the same as those in the proofs
of Theorems 5.1.1 and 5.2.1, respectively. Clearly, FI s, is uniquely deter­
mined by the conditions (a) through (c) by the application of
Theorems 3.1.5 and 3.2.4. That FE c2

r at each vertex follows by observing
(5.3.1) and that FE C(D) may be confirmed by applying Theorems 4.1.2,
4.2.2, and 4.3.1. Hence, F is a vertex spline in S:.

(ii) Construction of vi c S:
Let T = <Wi, w2>be an edge of D and let SvI' S V2 be two cells that share

T. Then there are three cases to be considered: (10) SVI' SV2 are two
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triangles; (2°) SVl' Svz are two parallelograms; and (3°) SVI is a triangle and
SV2 a parallelogram. For the first two cases, we have shown the construc­
tion of vi with support given by SVI U SV2 as in the proofs of
Theorems 5.1.1 and 5.2.1. For case (3°), let F be a piecewise polynomial
function supported on SVI U Svz with

Fls'l = L arxrP~,
Irxl~d

FI = " b J,(d,d)
8,z 1... fJ'f' fJ '

fJ,;;,(d,d)

where SV[=<W!,W2
,V

3) and SV2=<W1,WZ,v!,vZ). To ensure that FES~,
we specify the B6zier nets of FlS' and Fis as follows:

~ "'2 \/2

(a) For VE {wI, w2, v!, vZ, v3}, we require that

lal ~2r.

(b) For FI S"I' wc require that

for (Pi> pz) EN1= {(Pi> fJ2): °~ /32 ~ r, PI + /32 > 2r, °~ /31 ~ d- 2r-l},
where the cr/s are parameters which are not all equal to zero. We may then
determine bU,k), O~k~r, 2r-k<J<d-2r+k of Fls,z' Also, we impose
the conditions

and

for (Pi> pz)EN I
. For Fls,z' we require that

D~II_vlD~;_v[F(Vl)= 0,

D~i v,D~~ v[F(v1)=0,

and

for (PI' pz)EN I
.

(c) For Fi S'[' we require that

DP, D Pz F(v 3
) = 0wi v3 · w 2 . v3
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for ([31' [3Z) ENZ= U[3ll [3Z); 2r < [31 + [3z < d- r, r < [31 < d- 2r, r< /3z <
d-2r}. For Fls'I' we require that

D 1h Dill F(v 1 ) = 0v2 _ vI w 1 _ vI

for ([31l /3z) EN 3 = {([31' [3z), r < [31 < d - r, r < /3Z< d - r }.

Clearly, by Theorems 3.1.5 and 3.2.4, FI s is uniquely determined by the
'2

conditions above. Also, F is in CZY at all the vertices by the requirement in
(a), and that FE C(D) may be confirmed by the condition (b) and by
applying Theorem 4.3.1. Therefore, FE S~.

(iii) Construction of v~ c S~

Let T be a cell of D. Then T is either a triangle or a parallelogram. The
construction of a vertex spline on T is similar to that given in the proofs
of Theorem 5.1.1 or Theorem 5.2.1, respectively. This completes the proof
of the theorem.

Let us now construct the ba,sic vertex splines for a given mixed parti­
tioned region D = U~~ 1 Sv in RZ as follows:

10 For each vertex T Oi ' i = 1, ..., la, of the partitioned region D and
y E Z~ with Iy I~ 2r, let V~i be a function in v~ c S~(D) supported on the
union of cells of D that have TOi as one of their vertices with parameters
c 13 = (j py' I.BI ~ 2r.

2° For each edge T 1i , i= 1, ..., 11 of (the partition of) D and
y = (y 1, yz) E Nl, let VL be a vi c S~(D) supported on the union of cells of
D that share T!i with parameters cp=(jpy, .BEN!.

3° For each triangle TZi and y E N Z
, let ni be in V~ c S~(D) and

supported on T Zi with parameters c13 = (j py' .B E N Z
; and for each

parallelogram T;i' and y E N 3
, let T1i be a function in V~ c S~(D) suppor­

ted on T;i with parameters cp=(jpy, [3EN3.

Let 13 be the collection of all basic vertex splines so constructed. Then
the following results can be derived in the same manner as before.

THEOREM 5.3.2. For any given mixed partition region D, 13 provides a
basis of S~(D).

THEOREM 5.3.3. Suppose that fE C2d(D), d~ 4r + 1. Then

inf Ilf-slloo~Chd+! max IIDpflloo,
SE~ d+l~lpl~2d

where h is the maximum of the diameters of the triangles or parallelograms
of D and C is a constant independent off and h.
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6. ApPLICATIONS TO L 2 AND F ApPROXIMATION

WITH INTERPOLATORY CONSTRAINTS

We now apply the vertex splines developed in Sections 5.1, 5.2, and 5.3
to least-squares approximation with interpolatory constraints. Assume that
Dc RS is a simplicial partitioned region or parallelepiped partitioned
region (or mixed partitioned region if D c R 2

). Let V denote the set of all
vertices of D and 1= {IX E Zs+ : IIX I~ 2S

-
l r} and Ie a subset of V x I which

we will call an index set for interpolatory constraints. Note that Ie may
be empty. The problems of L 2 or F approximation with interpolatory
constraints can be stated as follows:

(L 2-Ie) Given a function f: D -'> R, find the super spline SfE S~(D),

where d~ 2sr + 1, r ~ 0, such that

II f - Sfll D,2 = inf {II f - s II D.2: s E S~ and D~s(v) = D"'f(v), (v, IX) E IJ. (6.1)

Here II gil D,2 = (JDI g(xW dX)I/2. Note that when Ie = 0, Problem (6,1) is
the usual L 2 approximation problem. (See [8] for example.)

(P-Ie ) Given only sample data {(Yi,f(y;), w;), i = 1, ..., L} with weights.
wi>O, i=l, ...,L, where Y={Yi}fcD such that if any (V,IX)Elc> then
VE Y, find a super spline sfES~(D), d~2s r+ 1, ~O, such that

and give a uniqueness criterion. Here, IlfI12,w=(Lf~1 wi lf(y;)1 2
)1/2. The

weights W= {Wi} may be normalized so that Lf~1 Wi= 1. Usually, the
quantity of data {Yi.f(Y;), w;}f is very large so that we will always assume
that L ~ M, where M denotes the dimension of S~(D). Note that when
Ie = 0, the problem becomes usual [2 approximation.

Denote by Vi' i = 1, ..., M, all the basic vertex splines in S~(D) con­
structed in Section 5.1, 5.2, or 5.3 accordingly. Also, let V~, v be the basic
vertex splines in V~ that satisfy DYV~,v(U)=bv, Ub""y, where (v, IX)Ele.
For simplicity, we rearrange if necessary so that {Vi: i = 1, ..., M - m} =
{V;:i=l, ...,M}\{V~,v:(V,IX)Ele}, where m=#Ie is the cardinalty of
the index set Ie. Then, clearly Problem (L2-Ie) is equivalent to solving the
linear system

where Aij=JD Vi(x) Vj(x)dx, i,j=l, ...,M-m, c=(cl, ...,CM_m)T, and
b= (b l , ... , bM_m)T with

bi= f (f(X)- I D"'f(v) v~,.(X)) V;(x)dx.
D (v, ~)EI,
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Observing that Vi(x), i= 1, ..., M -m, are linearly independent, we note
that the (M -m) x (M -m) Gramian matrix [AijJ is nonsingular and (*)
has a unique solution C=(cI, ...,CM mf. We also note that Aij can be
easily computed by using Lemma 2.1.2 or Lemma 2.2.2, and hi may be
estimated by using some quadrature formula in numerical computation.
We state this simple result for completeness.

THEOREM 6.1. Problem (L2
_() has a unique solution Sf in the super

spline space S~(D), d?; 2sr + 1 and r?; 0, where

1'1;1· m

SAX) = I D~f(v) V~)x) + I c;VAx)
(v. ct) f< Ie i c-:: 1

withc=(c l '''',C>\4)T=[AijJ lb.

By using Theorem 5.1.3, Theorem 5.2.3, or Theorem 5.3.3, we easily
obtain

THEOREM 6.2. Let d?; 2sr + 1 and consider fE Cd-'- \D) if D is a simpli­
cial partitioned region or f E Cd(D) if D is a parallelepiped partitioned region
in RS (or a mixed partitioned region in R2

). Then

ilf-Sjln,2<Chdt I,

where C depends only on the function f
We now turn to the study of Problem UZ-lc)' Again, let Vi(x),

i = 1, ..., jtf - m be the basic vertex splines in S~ (D) as above. We will use
the notation

1;= (Vi(Ytl, ..., Vi(YI.))T,

and f = (f(y I), ...,j(yI.W. Further, let

i= 1, ..., M -m,

7=f- I D"'f(v) V~,,(X)
(v•• ) c Ie

and 1= (](Yl)' "',](YI.W, Clearly, Problem (12-1,) can be reformulated as
follows, Determine c= (c 1 , , .. , CM m)T such that

M-m :1 I M m

1- I cJii' = inf ,!1- I aJi (6.3)
i = 1 :! 2, w (al, ... , aMm): {,.~ 1 2, w

Since Ii' i= I, ... , M -m, are not necessarily independent, Problem (l2-1cl
may have more than one solution. Following Hayes [18J, we give a
uniqueness criterion as follows: Let X be the set of solutions to (6.3), Then
we consider the following "adaptive" P-approximation problem:

640;60/1-5
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(P-IJ' Determine sf=L~lmCYi+L(v,"')EIe D"'f(v)VLES~ that
satisfies (6.2) and

(6.4 )

Then we have the following result.

THEOREM 6.3. Problem {P-IJ' has a unique solution in S~, where
d?; 2sr + 1.

Proof Let

y= {(~~1maYbd, , ~~1m aYlYL)): (ai' ..., aM-mfEX}

= {(l1 ···IM- m)(a1, , aM_m)T: (a1' ..., aM-mf EX}

and 1]j, j= 1, ..., k, be a basis of the null space of (/1 " ·IM - m ). Then it
follows that

where 1]* = (ar, ..., a!t _m)T EX.
Hence, it follows that (6.4) is equivalent to

(~~: 1C i 1
2Y/2 = "'~~~"'k 111]* + C(11]1 + ... + C(k1]k II t2

which will give a unique solution, since 1]1, ..., 1]k are linearly independent.
This completes the proof of the theorem.

Actually, as is well known, Problem (P-IJ' may be solved by using the
Moore-Penrose pseudoinverse; that is, Sf = L(v,,,,) E Ie D"'f(v) V~, V +
L~lm CYi' where c = (Cl> ... , cM-mf is the limit of

((/1" ·IM-m)* (/1 .. ·IM-m) + 81)-1 (/1' .. 1M-m)* f

as 8 --+ 0 + and I is the identity matrix (cr. Luenberger [23]).
The important question is how well Sf approximates f. The answer is

somewhat delicate since Sf does not necessarily converge to f as the number
of sample data increases and the size of the simplices or parallelepipeds
decreases to zero. However, if the sample data are fairly dense on a subset
E of D, we may still expect Sf to be close to f on E. In this respect, we need
the notation

dE=max min Ix-yil.
XEE l~i~L
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0E= min {Wi: yi EE}

and let 11 E be the minimum of the radii of the balls inscribed in the (simpli­
cial or parallelepiped) cells that have nonempty intersection with E.

Let E c D be a subdomain which is the union of some parallelepipeds d j ,

i = 1, ..., L, that are parallel to the coordinate hyperplanes and each of
which contains at least one tEE. We also need the constant C(d) of the
Markoff inequality on multivariate polynomials in the L 2 norm. This is
defined by

II a IIC(d) = max -Pd ,
IIPdlla= I oXj Q
i= 1, ... , s

where Q is either the standard simplex <0, er, ..., eS > with e j =
(0, ..., 0, 1,0, ..., 0) or the unit cube [0, 1]', and the maximum is taken over
all norm-one polynomials pd of degree d, which may be the total degree or
coordinate degree depending on Q.

Weare now ready to state the' next result.

THEOREM 6.4. Let E be a subset of D with

C(d) d~2 < 11 E'

Then for any fE cd + l(D) if D is a simplicial partitioned region, or fE CSd(D)
if D is a parallelepiped partitioned region (or a mixed partitioned region
in R2

),

Ilf-s II ~K(l- C(d) dS/2 )-1 (0 )-1/2 hd + 1
I r £,2'" 11 E E ,

E

where f = {j(yJ}, i = 1, ..., L, sr is the unique solution of Problem W- I,Y,
and the constant K depends only on f

Proof Let

sr=Sr- L Daf(v) V~,v·
(v, ~)EJ,

Since
[ 1/2

Ils-srIIE,2::::; (~I t l(s-sr)(x)1
2 dX)

[ 1/2

= (~I l(s-sr)(~iW VOl(dJ)

::::; II s - sr II Y n E, wOE 1/2

[ m
+(~II(s-sr)(U-(s-sr)(Yn)12VOl(di))
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we have

or

Hence,

CHUI AND LAI

= Iis-sril YnE,w<5£1/2

(
i I (; a a 1

2
) 1/2+ L l' - ... -a (s - Sr)(t) dt vol(dJ

i=1 Yn;at 1 ts

~ Iis-sril YnE,w <5£1/2

(
I

a a 1

2
)1/2+d~2 L f -"'-(S-Sr) dt ,

T;nE,p0 T; at1 ats

Ilj-srIIE,2~ Ilj-sIIE,2+ Ils- srIIE,2

~ vol(E)11 j-s liE, 00

+ (1- ~~) d~2) ~1 <5£1/2 (II S-j II YnE,2 + II j-srll YnE,2)

~ vol(E)11 j -S II D,oo

+2(1- ~~) d~2)~1 <5£1/21I s -jIIY,2

which, in view of Theorem 5.1.2, Theorem 5.2.3, or Theorem 5.3.3, yields
the desired result.

Remark. We may generalize the above study to LP and /P approxima­
tion, 1~p ~ 00, and similar results can be established.

7. EXAMPLES OF VERTEX SPLINES

For simplicity, we consider only examples of vertex splines in S~ in R2

and present their polynomial pieces in terms of the Bezier nets (see
Figs. 7.1-7.7). Pictures of these vertex splines on various supports are also
included in this section (see Figs. 7.8-7.35).
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FIG. 7.1. O-Vertex spline V&~,O)

FIG, 7.2, O-Vertex spline V6;'O)
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FIG. 7.3. O-Vertex spline V&?,1}
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PrG. 7.4. a-Vertex spline V/'7'O!
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FIG. 7.5. O-Vertex spline vb;·l)

FIG. 7.6. O-Vertex spline
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FIG. 7.7. I-Vertex spline Vli

(4.0,4.0)

a

(O.9,2.4)
~:::::.---~

(4.0,1.0)

FIG. 7.8a. The support of vertex splines shown in Figs. 7.10-7.15

b
(O.9,4.1}~ ~~

(1.1,1.0) (4.1,1.0)

FIG. 7.8b. The support of vertex splines shown in Figs. 7.16-7.21
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Suppose that D is a simplicial prtitioned region. Let Xl = (xi, x~) be a
vertex of the partition of D which may be an interior or boundary vertex
and <Xl, xl,k, Xi, k+ I), k = 1, ..., l = l(x l), be the 2-simplices in D which have
Xi as the common vertex, where Xi,l+ 1= Xl,1 if Xi is an interior vertex. For
each Xl, we construct the O-vertex splines Vbi' Iy I ~ 2, supported on
U~~I <xi, xi,k, Xi,k+I). For each I-simplex <Xi,l, X i,2), let <x i,\ X i. 2, X i,3)

and <x il
, X i ,2, X l,4) be the two 2-simplices whose intersection is <xu, X l,2).

(1.0,1.2)

"":*------~(4.5,2.5)

(3.5,0.9)

FIG. 7.9a. The support of vertex splines shown in Figs. 7.22-7.27

(3.0,4.0)

b

(0.7,2.1) .

(1.6,0.9)

(4.1,2.5)

FIG. 7.9b. The support of vertex splines shown in Figs. 7.28-7.33
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We construct the I-vertex spline Vi; supported on the union of these two
2-simplices. The Bezier nets of these vertex splines are displayed in
Figs. 7.1-7.7. Set

akl == 6(Xi,k+ 1, Xi, Xi,k-I) + 6(Xi,k, Xi,k+ 1, Xi,k~ I)'

6(Xi,k+ 1, X i,k+2, Xi,k)

1 . k .
bk=S(xi -x;),

1 . k . 2
dk=20 (xi -x~),

1 .k .
C = - (Xl, - x' )

k 5 2 2 ,

I' =~ (Xi, k _ Xi )(Xi,k+ I _ Xi)
J k 20 I I I I ,

h =~ (Xi,k _ Xi )(Xi,k+ I _ Xi)
k 20 2 2 2 2 ,

and

(4.0,O.9)

FIG. 7.34. The support of the I-vertex spline shown in Fig. 7.35
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where, as usual, we write Xi = (xi, x~), Xi,k = (x~k, X~k) and denote by

1 Xl Xl
I 2

b(Xl, x 2
, x 3

) = ! 1 x 2 x 2
I 2

1 x 3 x 3
I 2

the signed area of the 2-simplex (x!, x2
, x3 >.

We conclude with graphs of vertex splines on various supports
(Figs. 7.8-7.35).
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